
UHV Stepper Motor Drive

Introduction
Safety and warning notices
Technical information
Installation
Operation
Software
Remote interfaces
Communications protocol
Guidance on use of VCSMs
Maintenance and service
Troubleshooting
Storage and disposal
Assistance
Compliance Certificate

SMD4 User Manual

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2023-11/smd4-1-transparent.webp
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2023-11/smd4-rear-flat-render.JPG
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-03/dsub9-expanded.PNG
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-02/wcaimage.png

SMD4_1_transparent.webp

The SMD4 stepper motor drive is a single-axis bipolar stepper motor drive, intended for use with AMLs range of
vacuum-compatible stepper motors (VCSMs). It maximises motor performance while minimising temperature rise.

Powerful software is supplied with the SMD4 that enables you to easily control and configure multiple SMD4 units
simultaneously, in a single, user-friendly graphical interface. For advanced users, the drive can also be controlled via
scripting in JavaScript.

The drive features extensive communications options, including USB, RS232, RS485 and Ethernet. It also includes an
innovative boost feature; this uses an internal circuit to increase the 48 V input up to 67 V for driving the motors. This
allows the use of standard 48 V power supplies without compromising on motor performance.

AML assumes no liability and the warranty becomes null and void if the end-user or third parties:

Disregard the information in this document
Use the product in a non-conforming manner
Make any kind of alterations (modifications, repair work, etc.) to the product
Use the product with accessories not listed in the corresponding product documentation

We reserve the right to make technical changes without prior notice. The figures are non-committal.

Introduction

Liability and warranty

Safety and warning notices
WARNING! All work described in this document may only be carried out by persons who have suitable
technical training and the necessary experience or who have been instructed by the end-user of the product.

The safety of any system incorporating the instrument is the responsibility of the assembler of the system.

Use the instrument only as specified in this manual, otherwise the protection provided by the instrument might
be impaired.

Ignoring this or subsequent safety information could lead to personal injury, or malfunction or
permanent damage to the equipment.

General

Dimensions 166 mm x 106 mm x 56 mm
(excluding connectors and feet)

Weight 0.5 kg

Protection class IP 20

Temperature Operation 10°C to 60°C,
Storage -10°C to 85°C

Power supply 48 Vdc ± 5% power supply required. Power supply
included.

Power consumption 48 W maximum

Safety compliance EN 61010-1-2010

EMC compliance

Emissions EN61800-3:2018, EN55032 Class B, 3m (As
61800-3:2018, Table 17, Category C1, first
environment) Immunities, EN55035,
basic electromagnetic environment

Motor driver

Type 2 phase bipolar stepper motor driver for 4-lead motors

Phase current Up to 1 A RMS, adjustable in 30 mA steps

Source voltage
67 Vdc maximum
48 Vdc supply is boosted to 67 Vdc.
Boost function can be disabled if required.

Resolution
Full, 8, 16, 32, 64, 128, 256 micro-stepping
Stops on full step positions only, micro-stepping is used
for control of resonance and smoother step transition.

Step frequency 1 Hz to 15 kHz

Protection Short to ground and phase to phase

Motor temperature measurement

Type Selectable PT100 RTD or K-Type thermocouple

Range -200°C to 240°C

Accuracy ±15 °C for thermocouple, ±5 % for RTD

Technical information
General

Fault detection RTD: Open and short-circuit
Thermocouple: Open circuit only

Operating modes

• Remote - Control and configure via USB, Ethernet or Serial
• Step, Direction Enable (SDE) -For connection to an external motion controller or PLC
• Joystick - Single-step and continuous movement triggered via a joystick (supplied separately)
• Bake - Programmed cycle to heat the motor while stopped to drive off adsorbed gasses

Control interfaces

USB USB 2.0 Full Speed via USB-C connector
Virtual COM port and firmware update interface

Ethernet 10/100 Base-T, auto MDI-X, RJ45 8P8C connector
Telnet (port 11312), Modbus TCP (port 502)

Serial communication

Selectable RS232 or RS485 mode (shared pins)
Dual RJ45 8P8C connectors allow daisy chaining multiple
devices in RS485 mode
User selectable termination in RS485 mode 115200
default and maximum baud rate

Software

Compatibility Windows 10 or later

API C# API is available

SDE (step, direction enable) interface

Type Optocoupled, common cathode

Levels 3.3 Vdc to 5 Vdc maximum
Higher voltages require external current limiting resistor

Maximum frequency

2 MHz at 50% duty
Maximum full-step rate limited to 7.8 kHz for micro-step
resolution
of 256.

Limits

Quantity 2

Compatible switch types Mechanical NO or NC (polarity selectable)

Protection Withstands continuous short to 12 V maximum

Joystick

Connection Front panel mounted 4P4C jack with auto-detection of
connection state

Input type Active low, short to ground to activate function

General

Miscellaneous Open circuit voltage 3.3 V, source current < 3.5 mA

General

Order Code Item

SMD3JOY Joystick (compatible with SMD4)

CAB-D15D9 SMD4 Cable, 3m, D-Sub 15 Male to D-Sub 9 Female

CAB-D15MLF SMD4 Cable, 3m, D-Sub 15 Male to MLF18

CAB-3D15MLF SMD4 Cable, 3m, 3X D-Sub 15 Male to MLF18

All dimensions are in millimetres.

Qty. Item

1 SMD4

1 USB Type-A to USB Type-C lead

1 Power supply

The following accessory items are available from AML.

Mechanical

Scope of delivery

Accessories

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2023-11/smd4-datasheet-drawing.PNG

On receipt of the instrument remove all packing material and check that all items on the delivery note have been
received. Report any damage or shortages to the company or distributor who supplied the instrument. The packing
material has been specially designed to protect the instrument and should be retained for possible future use.

The SMD4 is a freestanding instrument. It does not require mounting. Forced air ventilation is not required. The
ambient operating temperature range is 10 °C to 60 °C.

Installation
Before installation

WARNING: Read this manual carefully before installing and operating the SMD4. Observe the following safety
instructions.

WARNING: All work described in this document may only be carried out by persons who have suitable
technical training and the necessary experience or who have been instructed by the end-user of the product.

WARNING: Without proper training and necessary experience, damage to the equipment or personal injury
might result.

DANGER: Danger of electric arcing! Never plug or unplug any connector while powered. Plugging or
unplugging a motor while powered may damage or destroy the driver output stage.

Unpacking

Mechanical installation

Connecting
Rear panel

Connector: Barrel power jack
2.1 mm pin, 5.6 mm hole

48 Vdc input. Centre positive.

Power input for both internal logic circuits and the motor itself.

The power supply must:

Meet the requirements set out in the technical information section of this document
Provide reinforced or double insulation between mains and supply output

The fuse should be sized:

Greater than the current consumption of the SMD4 when operating the connected motor
Less than the maximum current output of the power supply
Considering the voltage of the supply

Connector: DA15-F
D-Sub, 15 ways, female

1 Phase B2

2 Phase B1

3 Phase A2

4 Phase A1

5 Limit 1

6 Limit 2

7 Thermocouple negative

8 Thermocouple positive

9 GND

10

11

12

Power

DANGER: Danger of electric arcing! Never plug or unplug the connector while powered.

CAUTION: In the event of reverse polarity, a short circuit will occur between GND and V+ through an internal
power diode. An external fuse may be required.

Motor

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-03/Uv8dc.png
https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/technical-information
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-03/d-sub-15.png

13 RTD B2

14 RTD B1

15 RTD A

Connection of the motor to the vacuum feedthrough, and vacuum feedthrough to the SMD4 is discussed in
section Motor Wiring.

There are two limits inputs; they can be configured to stop the motor on one or both limits being triggered. A limit input
is triggered by shorting it to 'GND', usually with a mechanical switch mounted on the mechanism that the motor is
driving. Logic level signals, for example, from optical or hall effect sensors may also be used.
Input polarity can be reversed to accommodate normally open or normally closed switches.

Limit 1 applies when the motor position counter is incrementing, and limit 2 applies when the motor position counter is
decrementing.

Limits inputs include a pullup resistor. See section Limits for details.

The thermocouple lead for motors equipped with the standard K-Type thermocouple should be connected here. If using
a motor equipped with an RTD, this connection may be left open. Be sure to select the correct sensor type, see
section Temperature sensor selection.

For motors equipped with an RTD instead of a thermocouple, make the RTD connection here. If the RTD is not required,
leave the connections open.

The RTD input is compensated for cable length by the three-wire connection.

Custom motor cables must be built to the following specification to ensure continued compliance with EMC standards
and correct function.

General requirements:

DANGER! Danger of electric arcing! Never plug or unplug the connector while powered! Plugging or
unplugging motor while powered may damage or destroy the driver output stages.

Motor

Limits

INFORMATION: Limits inputs are duplicated on the I/O connector for maximum user flexibility in arranging
wiring for the system. Limit signals on both this and the I/O connector are electrically connected. Do not apply
different electrical potentials between like-named limits inputs otherwise a short will occur between the two.

Thermocouple

INFORMATION: To provide greater convenience in wiring to the vacuum chamber, the thermocouple input is
included on the motor connector, rather than a dedicated micro K-Type thermocouple connector. This comes
at the cost of reduced accuracy due to the parasitic thermocouple junctions that exist within the connector.
This is accounted for by the looser accuracy specification for the thermocouple input over the RTD one, and a
generous tolerance in the motor over temperature threshold as further insurance. Nonetheless, accuracy can
be improved by avoiding large temperature gradients across the SMD4; for example, avoid placing the rear
panel of the product in direct line of hot exhaust from other equipment.

RTD

Custom cables

https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/installation#bkmrk-motor-wiring
https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-limits
https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/operation#bkmrk-temperature-sensor-s

Rated voltage >= 300 V rms, rated current > 1.5 A rms
Construction; twisted pairs plus overall screen. Foil screen plus drain wire (of same or greater cross-sectional
area as main cores) acceptable, foil plus braided screen better
Screen must be connected via as short a wire as possible to a ground pin (pins 9-11) on the connector, using
insulated wire
Maximum cable length is limited by the resistance of the cores; total round-trip cable resistance per phase
should be kept to less than a few ohms. Consult the cable manufacturer's data for these details. Excessive
cable length causes a reduction in phase voltage at the motor compromising speed/torque characteristics.
The RTD circuit is compensated against cable length.

Temperature sensors:

Use one twisted pair for the thermocouple
Use one twisted pair for RTD A and B1, and one lead from a second pair for B2

Connector: DE9-F
D-Sub, 9 ways, female

1 GND

2 Fault (Output, open collector)

3 Limit 1/positive

4 Enable

5 Step

6 Reset fault (Input, active low)

7 Limit 2/negative

8 SDE COM

9 Direction

The SMD4 disables the motor under certain fault conditions, see section Faults. When this happens, the open collector
‘Fault’ output is set and may be used to signal to an external controller that the SMD4 is in a fault state.

Fault states are latching; once set the fault condition must be removed and the fault reset before normal operation
may resume using either a remote interface command (see CLR) or pulling the ‘Reset fault’ signal to ‘GND’. This does
not apply to the ‘EN’ (enable) input when in step direction mode, i.e. the enable input is not latching, and normal
operation will resume immediately on restoring the enable input state. See section Faults for details.

Duplicated from the motor connector.

The step direction enable interface is an industry-standard interface allowing an external motion controller to generate
stepping sequences, bypassing the SMD4’s internal motion controller. The inputs are galvanically isolated with three
opto-isolators, and share a common connection, ‘SDE COM’. See section Step/Direction for details.

I/O

Fault output and fault reset

Limits

Step, direction and enable

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-03/d-sub-9.png
https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/operation#bkmrk-faults
https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/communications-protocol#bkmrk-sys%253Aclr-%25E2%2580%2593-clear-faul
https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/operation#bkmrk-faults
https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/communications-protocol#bkmrk-step%252Fdirection

Connector: USB-C

USB Type-C connection. The connection is reversible, and the plug may be inserted either way up.

The SMD4 appears as a virtual COM port when connected to the PC. No additional drivers are required. Configure and
control the SMD4 using AML Device Control software, available as a free download from our website at
https://arunmicro.com/documents/software/

Alternatively, use a terminal program, or your own application. AML supply a C# API, available on our website to help
customers implement their own applications faster.

Connector: 8P8C RJ45
RJ45, 8 poles, 8 connections

10/100M network connection with Auto MDI-X.

Configure and control the SMD4 using AML Device Control software, available as a free download from our website at
https://arunmicro.com/documents/software/

Alternatively, use a terminal program, or your own application. AML supply a C# API, available on our website to help
customers implement their own applications faster.

Connector: 8P8C RJ45
RJ45, 8 poles 8 connections

1

2

3

4 A+/Tx

5 B-/Rx

6

7

8 GND

RS232 and RS485 share pins. Before connecting to them, use an alternate interface (USB or LAN) to configure the
desired mode of operation. Undefined behaviour will result if the SMD4 is connected to an RS485 network when in
RS232 mode or vice-versa.

There are two identical connectors, allowing SMD4 devices to be daisy-chained together.

An optional termination resistance can be enabled if required. This would typically be enabled on the last device on the
bus, to reduce reflections and maintain signal integrity. The usage of this feature should be evaluated in the final
system.

USB

LAN

RS232/485

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-03/x5.png
https://arunmicro.com/documents/software/
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-03/lan.png
https://arunmicro.com/documents/software/
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-03/rs232.png

The dual connectors allow multiple SMD4s (or other devices) to be bussed together. There are several important
considerations to be aware of when doing so:

RS232 is not well suited to multi-drop; use RS485 for this purpose if at all possible. If using RS232, devices
can receive and process commands, but will not respond and data cannot be returned to the host.
Ensure all devices on the bus are in the the same mode (RS232 or RS485) and the same serial configuration
(baud rate, etc) matches between devices.
When using text protocol, begin all commands with the '@' addressing prefix. This places the SMD4 into
addressing mode which brings into force alternate communication rules that allow the SMD4 to function
properly on a bus with other devices. This is discussed in the Addressing section.
Do not use text protocol commands without the addressing prefix. This will cause multiple devices to respond
at once and the resulting bus contention may result in undefined behaviour.

1 GND

2 CW

3 CCW

4 DETECT

For connection of a two-button joystick allowing basic motor control, for example, during commissioning. AML supply
the SMD3 Joystick, part number ‘SMD3JOY’, which is compatible with the SMD4, for this purpose. The SMD4 can be
configured to automatically switch to joystick mode on connection of the joystick. See AUTOJS.

If designing your own joystick or device to connect to this port:

Inputs have internal pull-ups
Activate the function by shorting ‘CW’, ‘CCW’ or ‘DETECT’ to pin 1, ‘GND’
‘DETECT’ is used to signal to the SMD4 that the joystick is connected and trigger automatic switch to joystick
mode (if configured). If this functionality is not required, leave the pin unconnected.

Logic level signals may also be used; 12 V max.

Configure the mode of operation (RS232 or RS485) before plugging a connector in. Do not make changes to
the mode without first disconnecting both connectors. Undefined behaviour will result if the SMD4 is connected
to an RS485 network when in RS232 mode or vice-versa.

Bussing

Front panel

Joystick

Status indicators

https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-addressing
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-02/dVMimage.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2023-10/lzGdtdpower-connector-pinout.png
https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/communications-protocol#bkmrk-%25C2%25A0-15

The fault indicator flashes or remains lit if the SMD4 is in a fault state (see section Faults for fault indications). When a
fault is present, motor operation is disabled.

Connecting motors inside a vacuum chamber to the SMD4 comprises two tasks:

Wiring the motor to a vacuum feedthrough installed in the chamber wall.
Wiring the vacuum feedthrough to the SMD4.

AML supply vacuum feedthroughs, ready-made cabling, and components allowing custom cables to be easily
manufactured. A typical setup is shown below and used for illustration throughout this section.

The motor leadout wires are self-coloured polyimide film-wrapped, silver-plated OFHC solid copper and each is fitted
with a 1.5 mm crimp socket terminal. They are supplied fitted with UHV compatible coloured glass beads for
identification. The phase leadout wires are much thicker than the thermocouple leadouts. The leadout wires of each
phase should be twisted together.

Motors equiped with a Thermocouple: Motors equiped with an RTD:

Motor wiring
Overview

INFORMATION: Verify that the motor is working correctly before sealing the vacuum chamber. Rectifying
mistakes afterwards is inconvenient.

Lead identification

https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/operation#bkmrk-faults
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-02/smd4-to-feedthrough-connection.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2023-10/motor-leadout-wires-illustration-2.png

If the identification beads have been removed, the wires can be identified using an inexpensive multimeter, and a
magnet. The multimeter must be capable of measuring resistance with a resolution of about 1 ohm.

Thermocouple Leadouts
The thermocouple wires are much thinner than the phase
leads, and there are two of them. If three wires are
present, the motor has an RTD installed, see below for
details. The thermocouple is insulated from the rest of
the motor.
The two leads are of different material; one is made from
Alumel, which is weakly magnetic, and the other
Chromel, which is not. Use a magnet to find the Alumel
wire, then connect as shown below.

Lead Connected to terminal marked

Alumel Alumel, N, - (minus) or coloured blue

Chromel Chromel, P, + (plus) or coloured brown

RTD Leadouts
As per the thermocouple leads, but three instead of two
leads. These must be identified by resistance; one pair of
wires are connected at the motor end. These will
measure a few ohms depending on cable length and are
the ‘B1’ and ‘B2’ connections, which are interchangeable.
The remaining wire is the ‘A’ connection and should
measure around 100 ohms to either ‘B1’ or ‘B2’.

Lead Connected to terminal marked

A A, or coloured blue

B1 Chromel,B1, or coloured brown

B2 B2, or coloured brown

Phase leadouts
These are the four thicker leadouts. Identify the two motor phases by their resistance, which will be in the range of 3 to
15 ohms, depending on the motor type. There is no electrical connection between the two phases, to the
thermocouple/RTD or the case of the motor. Most of the resistance is in the windings of the motor and is virtually
unaffected by shortening of the leads. Connect each phase to the appropriate drive terminals. The resistance of the
wires from the feedthrough to the drive must be less than a few ohms.

Upon completion of wiring, there is a 50 % probability that the direction of rotation will be reversed from the desired or
conventional sense. To rectify this, exchange the connections to one of the phases. For example, locate the Phase A +
and Phase A – connections, and swap them around. This can be done on air or vacuum side while the chamber is still
open.

AML motors are commonly connected via an MLF18 feedthrough or a standard D-Sub feedthrough.

9-Way D-Sub

The VC9D-40CF 9-way D-Sub male feedthrough is suitable for one motor fitted with either a thermocouple or 3-wire
RTD. The standard crimp terminals supplied with AML motor leadout wires should be removed and replaced with a
VC9DF PEEK D-Sub female connector and crimp terminals. An optional VC9DB cable strain relief is also available.

Note regarding reversal of rotation

Wiring motor to a vacuum feedthrough

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2023-10/motor-leadout-wires-rtd-illustration.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2023-10/motor-leadout-wires-rtd-illustration.png

Motor wires pinout for the VC9DF

The illustration below shows the view into the non-mating side of the connector, into which the motor leads should be
inserted, as shown below. Pass the wires through the backshell before crimping.

Connection Colour Pin Pin Insertion Side

Phase A1 Green 4

Phase A2 Grey 3

Phase B1 Black 2

Phase B2 White 1

Thermocouple + Brown 8

Thermocouple - Blue 7

RTD A Blue 5

RTD B1 Brown 6

RTD B2 Brown 9

18-Way MLF18

The MLF18F feedthrough has 18 x 1.5 mm gold-plated feedthrough pins and is suitable for up to three motors fitted
with thermocouples or up to two motors fitted with 3-wire RTDs. An internal bakeable connector, MLF18VCF, is
available into which the crimp terminals on the motor leads are inserted. This significantly reduces the risk of short-
circuits and makes the installation more convenient.

Using the MLF18F feedthrough and MLF18VCF vacuum
side connector:

Alternatively, plug crimps directly onto the feedthrough
pins of the MLF18F:

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-03/d-sub9-female.PNG

Mating side identified by dot. Motor lead terminals
should be inserted in the other side.

Standard pinout for the MLF18VCF

The illustration below shows the view into the non-mating side of the connector, into which the motor leads should
be inserted, as shown below.

Connection Colour Motor 1 Motor 2

Phase A1 Green 1 7

Phase A2 Grey 3 9

Phase B1 Black 2 8

Phase B2 White 4 10

Thermocouple + Brown 5 11

Thermocouple - Blue 6 12

RTD A Blue 13 16

RTD B1 Brown 14 17

RTD B2 Brown 15 18

Using other feedthroughs
AML stepper motors can be ordered with either a K-Type thermocouple, or 3-wire PT100 RTD. The former requires 6
pins, and the latter 7 pins.

When using motors installed with a thermocouple, it is not necessary to use a thermocouple vacuum feedthrough or
extension wires, as the error introduced by incompatible feedthrough material is usually less than 5 °C and the
temperature measurement is not required to be very precise.

Preparation of motor leadouts for connection to other feedthroughs

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2023-10/vacuum-side-motor-connection-mlf18vcf.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2023-10/vacuum-side-motor-connection-straight-into-mlf18f-3.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2023-10/mlf18ac-pinning.png

If making custom terminations for the motor leads, the installed crimps must be
removed, and the wire ends stripped of insulation. Standard motors are fitted with
Polyimide film-wrapped leads (illustrated below), and radiation-hard motors are
fitted with polyimide-enamelled leads.

Polyimide is strong, flexible and abrasion-resistant and therefore difficult to strip.
The simplest method of stripping polyimide film is to cut a ring with a sharp knife
and withdraw the cylinder of insulation over the end of the wire.
Be careful not to mark the conductor surface with the knife. Strip the enamelled
radiation-hard leads by scraping with a sharp knife. Either type of lead may be
stripped with a suitable high-speed rotary stripper. Do not use a thermal stripper.

AML supply three standard SMD4 cables. These are:

CAB-D15D9: 3 metres long. D-sub 15-way male connector for connecting to the SMD4. D-sub 9-way female connector
for connecting to a feedthrough, such as AML's VF9D-40CF.

CAB-D15MLF: 3 metres long. D-sub 15-way male connector for connecting to the SMD4. MLF18AC connector for
connecting to AML's MLF18F feedthrough.

CAB-3D15MLF: 3 metres long. 3x D-sub 15-way male connectors for connecting up to 3
separate SMD4s. MLF18AC connector for connecting to AML's MLF18F feedthrough.

Alternatively, AML supply multiple air-side connectors which can be used to make custom leads to mate with the
MLF18F or D-sub electrical feedthroughs. These are supplied with a kit that includes the crimps as well as instructions
for their use.

Leads between the MLF18AC and SMD4 should be assembled according to the following guidance for safe, reliable
operation and continued compliance with EMC standards.

Cable requirements

Quantity of cores as required; (one motor requires 6 cores when fitted with a thermocouple, or 7 if fitted with
an RTD). The cable must be screened. A foil screen plus drain wire is acceptable; a foil plus braid screen is
better.
The screen must be connected via as short a wire as possible to pin 1, ‘GND’ of the motor connector, using
insulated wire.
Rated voltage >= 300 V rms
Rated current > 1.5 A rms
Cable cores must be twisted together in pairs, using one pair per phase, one pair for the thermocouple, and a
group of three for the RTD. This reduces radiated emissions from the cable and improves immunity of the RTD
and thermocouple signals to the motor.
Maximum cable length is limited by round trip resistance, which should be less than a few ohms. Review cable
manufacturer's data to obtain this figure.

Wiring up to the MLF18AC airside connector

The MLF18AC is supplied with comprehensive instructions detailing correct usage of the connector. The pinout to
match with the standard MLF18F + MLF18VCF pinning described in section Motor wiring is shown below. Note that the
illustration shows the MLF18AC looking into the non-mating side of the connector, i.e. the side into which crimps are
inserted.

Connection Colour Motor 1 Motor 2

Phase A1 Green 1 7

Phase A2 Grey 3 9

Looking into the non-mating face of the MLF18AC, into

which crimps are inserted

Wiring between drive and vacuum feedthrough

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2023-10/polyamide-wire-stripping.png
https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/installation#bkmrk-motor-wiring

Phase B1 Black 2 8

Phase B2 White 4 10

Thermocouple + Brown 5 11

Thermocouple - Blue 6 12

RTD A Blue 13 16

RTD B1 Brown 14 17

RTD B2 Brown 15 18

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2023-10/mlf18ac-pinning.png

The quickest way to get started with the SMD4 having completed wiring up according to the previous chapter is to
install the SMD4 software on your PC (see Software section), power on the SMD4 and connect it with the USB lead to
the PC. The SMD4 software provides an intuitive and easy way to configure and evaluate the features of the SMD4
described in the remainder of this section.

This section discusses the various operational modes and configuration options available. The SMD4 software provides
easy access to these functions, as well as help text describing each. If communicating with the SMD4 directly, using a
terminal program or your own software, see section 7 which lists the commands available.

The product has several operating modes which define how motor movement is commanded. Configuration can be
performed at any time and in any mode using one of the remote interfaces (USB, LAN or Serial).

The modes are:

Remote - Control of motor via remote interface
Joystick - Control of motor via a joystick
Step/Direction - Control of motor via industry-standard step, direction enable interface
Bake - Control of phase current to heat motor (while keeping it stationary) to drive off adsorbed gasses

Mode can be changed only when the motor is not performing any movement. This can be verified by checking the
standby flag, which is returned in a status register by the SMD4 on every communication. The firmware prevents mode
change when the standby flag is not set.

Command motor movements via the remote interface. Comprehensive control of all aspects of motor movement. Other
functions are executed from remote mode, for example, homing, in which the motor moves until a limit switch is hit,
serving as a reference for future movements.

The easiest way to use remote mode is with the supplied AML Device Control software, which allows one or more SMD4
units to be combined into a system and controlled individually or as a group. This makes it easy to apply the same
configuration to multiple devices, for example.

Alternatively, the SMD4 may be controlled via a simple terminal application or your own software. A C# API is
available to speed up development of your own applications. The remote interface is described in section remote
interfaces.

Homing drives the motor to the positive or negative limit switch. The motor first moves toward the limit switch using
the existing movement profile. On the limit switch being triggered, the step frequency is halved, and the motor
reversed until the limit switch is not triggered. Finally, the motor moves toward the limit switch at a step frequency of
30 Hz until the limit switch is triggered.

Operation
Getting started

Operating modes

Remote

Homing function

INFORMATION: Limitations of limits
Limit switches are not latching, i.e. as soon as a limit input becomes not triggered, for example if the
mechanism is able to first actuate a limit switch and then continue moving past it until the limit switch is no
longer actuated, then the SMD4 will be unaware of this and will continue to drive the motor if commanded.

Limits switches and cams are normally arranged such that the limit switch is triggered from the desired point
up to and including the point at which the mechanical limit of the mechanism is encountered.

Joystick

https://bookstack.vps-da8d40f3.arunmicro.com/link/29#bkmrk-page-title
https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/remote-interfaces

Basic motor movements may be commanded via a two-button joystick connected to front panel connector. AML supply
the SMD4 Joystick, part number ‘SMD4JOY’ for this purpose. Optionally, on connection, the SMD4 automatically
switches to joystick mode, and reverts to the previous mode on removal of the joystick. This behaviour can be disabled
if required.

There are two joystick modes; both operate using velocity mode (see section Velocity and Positioning Mode for details)
in which a profile, including acceleration, deceleration and target frequency are programmed, then motor movement is
triggered by the joystick.

Continuous

Motor accelerates toward target frequency on joystick
key down. Continuing to hold the key down has no
further effect.

On releasing and pressing the same key again, the
motor decelerates toward a stop.

On pressing the alternate direction key, motor first
decelerates to a stop before accelerating toward target
frequency in the other direction.

If the motor has not yet come to a stop, and the same
key is pressed again, the motor will once more
accelerate towards target frequency, as illustrated left.

Single step

A short button press (< 0.5 s) causes a single step in the
commanded direction. This is useful for precise
positioning.

A long press (> 0.5 s) triggers acceleration toward the
target frequency, while the button continues to be
pressed.

Releasing the button causes the motor to decelerate
toward a stop.

If the button is pressed while the motor is still
decelerating, the motor once more accelerates toward
target frequency for as long as the button is held.

Motor movement is controlled by externally supplied step and direction signals. There are two sub modes, normal and
triggered.

The SMD4 can be configured to step on the rising or rising and falling edges, which halves the step clock rate.

The external enable fault is non-latching when in step direction mode; once the external enable state is restored, or
the external enable setting is changed to false, normal operation will resume immediately without the need to clear it.

Step input Direction input

 Both Rising only Meaning

Rising Step Step Low Positive

Falling Step High Negative

Step/Direction

Normal mode

https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-velocity-and-positio

Steps are generated according to the current resolution. For example, with the edge setting on rising only, and
microstep resolution set to 128, each rising edge on the step input will generate a single 1/128th step.

A step interpolation option is available; when enabled, the step input behaves as it would with the current resolution,
except that each step input is interpolated to 256 microsteps. This is done by evaluating the rate at which steps arrive
and timing 256 microsteps within the step-to-step period. This gives all the benefits of microstepping at high resolution
while minimising the input clock rate.

The relationship between step input, resolution and actual step frequency is given below:

Motor Step frequency [Hz] = (Step input [Hz] / Resolution)

This mode works the same as joystick continuous mode, except that the positive and negative inputs that would
normally be supplied via the joystick input are instead generated from the step and direction inputs:

Step input Direction input

Meaning Meaning

Rising Triggers start / stop Low Positive

Falling No action High Negative

In the case of Step/Direction mode, it is the responsibility of the external controller to perform any final activities, such
as coming to a stop, before changing the mode.

Heats the motor by energising both phases and holding the motor stationary, regulating the current to achieve a set
point temperature. Used to drive off adsorbed moisture in the motor.

Before engaging bake mode, set the target bake temperature. When in bake mode, the green status indicator will
flash briefly at intervals as a reminder that this mode is active.

In general, all control and configuration of the SMD4 is performed via the remote interface. The following functions and
indications are available locally on the SMD4:

Basic status information, via front panel green and red indicators. Green signifies power on and normal
operation, red a fault. See section Faults. The green indicator also blinks briefly when the operating mode is
changed.
Joystick control – plug a joystick into the front panel joystick connection, and basic movements may be
performed according to the current configuration. See section Joystick.
Step/Direction interface; if in this mode, the motor may be controlled via signals supplied on the I/O port. See
section Step / Direction.
Fault output and fault reset input on the I/O connector – An open collector fault output is set when a fault

INFORMATION: Stopping on fractional steps
There is no mechanism to prevent the motor from stopping on fractional steps as there is in all other modes.
Stopping on fractional steps will result in the motor temperature rising much faster than it otherwise would
and is generally not suitable for vacuum applications. Therefore, configure the external step generator to meet
this criteria.

INFORMATION: Preparation before switching out of Step/Direction mode
When changing to another mode from Step/Direction mode, ensure that any movement being commanded via
Step/Direction interface has completed, and that the motor is at a full step position before switching.

Triggered mode

Bake

General concepts
User interface

https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-joystick
https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-faults
https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-joystick
https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-step%252Fdirection

occurs. The fault state can be reset by pulling the fault reset pin to the ‘GND’ pin of the I/O connector. See
section Faults.

All changes made to the configuration via the remote interface are volatile (i.e. not retained on power cycling) unless
the store command is executed before powering off. The AML Device Control software warns you of this when closing
the application, but if writing a custom application to control the SMD4, your application must handle this if settings
are to be persisted.

The SMD4 will always load the last stored settings on power on, or if the store command has not been previously used,
defaults are loaded as per section Command Reference. If settings become corrupted, for example, the write
endurance of the memory in which the settings are stored is exceeded, the SMD4 loads defaults as identified above,
and a fault indication is given, see section Faults.

Three values may be set for motor current; acceleration current, run current and hold current.

 Applies when

Acceleration Motor is running but not at target frequency, i.e. during
acceleration and deceleration. This allows you to set a
higher current during acceleration (to overcome inertia
of a large load, for example) and revert to a lower
current once the load is moving, thus reducing motor
power dissipation and extending run time. If you do not
wish to use this feature, simply set acceleration current
to equal run current.

Run Motor has reached target frequency.

Hold Motor is stopped and is only necessary where the motor
detent torque is not enough to prevent undesirable
movement of the load. The cost of using hold current is
increased motor temperature under vacuum. Therefore,
where possible, mechanisms should be designed to be
statically balanced, and the hold current should be set to
0.

When the motor starts moving, acceleration current is applied immediately. When the motor stops after the
deceleration, two additional states must be traversed before the acceleration current is reduced to hold current, first, a
configurable delay during which acceleration current continues to be applied (called ‘standstill’ state), followed by a
configurable delay during which acceleration current is reduced to hold current (called ‘going to standby’ state).

Run current must be set equal to or smaller than acceleration current. This is enforced by the SMD4; if a change to run
current makes it greater than the acceleration current, the acceleration current is automatically adjusted to be equal
to run current.

Standstill
Period after motor has stopped during which acceleration current is still applied. Adjustable between about 0 and 5.57
seconds using the ‘Power down delay’ setting [PDDEL]. Set to the minimum value suitable for your application to
minimise heat generated.

Going to standby

Persistence of settings

INFORMATION: Write endurance
The memory in which settings are stored has an endurance of about 1 Million write cycles. Only use the store
command when necessary, for example, take care that your application does not perform multiple redundant
store commands.

Motor current

https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-faults
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-command-reference
https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-faults

Period during which acceleration current is gradually reduced to hold current. This smooth transition avoids a motor
jerk on power down. Motor current is not continuously adjustable, instead being one of 31 discrete values from 0 to
1.044 A rms. Therefore, the current ramps down in steps. The step size may be set between 0 (instant power down)
and 327 ms using the ‘Current reduction delay’ setting [IHD]. Set to the minimum value suitable for your application to
minimise heat generated.

The name of each setting in the following illustrations matches that used in the software. The command mnemonic, for
use if programming the SMD4 via the remote interface (see section remote interfaces), is given in square brackets.

Figure 1 - Motor current and speed

Microstepping is applicable at low step frequencies (typically < 500 Hz) and helps reduce motor resonances resulting
in smoother operation. In non-vacuum applications, it is also used to achieve increased positioning resolution,
however, it requires energising both motor phases continuously even when the motor is stopped to maintain position,
resulting in unacceptable levels of temperature rise in the motor in vacuum applications. Instead, mechanisms are
designed to achieve the required positioning resolution with appropriate gearing.

Microstepping is not helpful at higher step rates, therefore, the SMD4 automatically switches between microstepping
at low speeds and full step at high speeds. The transition point from full step to microstep is configurable, as illustrated
in Figure 1. Hysteresis is applied to this value resulting in the transition in the opposite direction (from microstep to full
step) being at a slightly higher frequency, as illustrated above. Note that you cannot explicitly set the transition to full
step point, only the transition from full step to microstep. The other transition is calculated automatically.

The resolution to use during microstepping is configurable, via the microstep resolution setting [RES]. Choices are 8,
16, 32, 64, 128 and 256. In all modes except for step/direction, the motor is only stopped in full-step positions.
Microstepping is used exclusively for the purpose of smoothing the transition between steps.

The accuracy with which motor profile (acceleration, deceleration, etc.) settings may be made depends on the
microstepping resolution; the maximum microstep resolution of 256 offers the greatest accuracy for these settings.

Microstepping

https://bookstack.vps-da8d40f3.arunmicro.com/link/50#bkmrk-page-title

Freewheel mode refers to how the motor is configured when it is at standstill and zero hold current is set. There are
three choices:

Use freewheel for minimum holding torque, which allows the motor shaft to be moved freely.
Phases shorted for maximum holding torque with zero power applied to the motor (and so no heat
generated in the motor).
Normal offers some minimal amount of holding torque as a result of the phases still being connected to the
driver circuitry.

All modes except step/direction fundamentally use the hardware of the SMD4 in one of two ways:

Velocity mode. Motor is accelerated to a target velocity in a specified direction (Positive or Negative), which
may be maintained indefinitely. On stopping, the SMD4 decelerates according to the configured profile and
stops in a full step position.
Positioning mode. Motor is driven toward a chosen position, determined by an internal step counter and a
relative or absolute step count position. The motor starts by accelerating towards the target velocity, then as
the target position is approached begins to decelerate before coming to a stop at the target position. Position
can be specified in full steps only.

Step/direction triggered velocity mode uses velocity mode internally and joystick mode uses a combination of velocity
and positioning mode. In remote mode, velocity and positioning mode must be selected with the appropriate
command.

In remote mode, movement is started via a run command and stopped via stop command. Movement cannot begin
spontaneously as a result of changing a setting, for example. Direction is specified as positive, which results in the
position counter incrementing, or negative which results in the position counter decrementing.

In all other modes, motor movement is determined by an external stimulus, for example, a joystick button press in
joystick mode, or an edge on the step input in step/direction mode.

Motor temperature, speed and position may be queried using remote interface commands.

An enable input is present as part of the SDE interface, but the enable signal may be used in any mode. The motor is
enabled when high and disabled (all motor movement inhibited) when low.

The enable input is ‘gated’ by an external enable setting; when enabled, the behaviour described above applies. When
disabled, the enable input is treated as if it was true, regardless of the actual state. This allows the user to decide
whether the enable input is used or not.

When the enable input is not used, then the SMD4 is responsible for enabling the motor as required, consistent with
any other requirement described in this document.

Enable input
 Setting enabled Setting disabled
Low Motor disabled Motor enabled
High Motor enabled Motor enabled

Freewheel mode

Velocity and Positioning mode

Initiating movement

Monitoring the motor

INFORMATION: Motor control is open loop, therefore quantities such as position and velocity are determined
from internal counters in the SMD4. These cannot be relied upon in certain circumstances, such as if the motor
is stalled, or misses steps due to improper configuration.

Enable input

Motor configuration

AML motors can be supplied with either a K-Type thermocouple or PT100 RTD temperature sensor. Ensure the sensor
is connected to the thermocouple or RTD input on the motor connector, and make the appropriate selection. The
temperature sensor select command allows selection between thermocouple and RTD.

This section is concerned with configuring dynamic properties of motor movement. The profile settings apply to all
modes except for step/direction mode. Tuning of these parameters is required to optimise motor performance in your
application, and is necessary to engage positioning or velocity mode.

The name of each setting in the following illustrations matches that used in the software. The command mnemonic, for
use if programming the SMD4 via the remote interface (see section remote interfaces), is given in square brackets.

The start frequency is the initial step rate, and helps to allow the motor to overcome inertia and start moving
smoothly; if start frequency were zero, the duration of the initial few steps might be long enough that the motor would
overcome inertia on the first step, then effectively stop for a period of time, then have to overcome inertia once more
for the second step, and so on, until the steps were frequent enough that the motor remains moving.

Stop frequency is the counterpart setting which determines the frequency for the last step. Both are specified in Hz, or
steps per second.

Start frequency must be set equal to or smaller than stop frequency. This is enforced by the SMD4; if a change to the
stop frequency makes it smaller than the start frequency, start frequency is automatically adjusted to be equal to stop
frequency.

Start frequency and Stop frequency must be set equal to or smaller than Step frequency. The SMD4 will not force Start
and Stop frequency to match Step frequency if either Start or Stop frequency are smaller than Step frequency.

The SMD4 implements linear acceleration and deceleration ramps; velocity ramps up between the start frequency and
the step frequency, and down linearly between the step frequency and stop frequency. Both are specified in Hz-1, or
steps per second per second.

Temperature sensor selection

INFORMATION: The motor is disabled if the temperature sensor is misconnected, faulty or the temperature
measurement exceeds 190 °C in order to protect the motor from possible damage to the insulation material.

Check that the motor temperature sensor selection matches that of your motor.

When using a thermocouple, avoid significant temperature gradients across the thermocouple leads and
connector on the SMD4.

Profile configuration

Start and stop frequency

Acceleration and deceleration

https://bookstack.vps-da8d40f3.arunmicro.com/link/50#bkmrk-page-title

When using higher values for the start and stop frequency, a subsequent move in the opposite direction would result in
a jerk equal to start frequency + stop frequency. The motor may not be able to follow this. The zero wait time
setting can be used to introduce a short delay between the two and eliminate the jerk as illustrated above.

Mechanisms sometimes include limit switches, typically
mechanical switches positioned to open or close when
some start or end point of travel is reached for example.
This is used as a trigger to stop the motor

Configuration options allow limits to be individually or
globally enabled or disabled, polarity to be set (i.e. trigger
limit on switch open, called ‘Active low’ or switch closed,
called ‘Active high’). The configuration options are
illustrated below. AML Device control software additionally
allows each limit to be given a custom name, for example
‘right switch’ to make it easier to identify within the
software.

Limit activation summary in relation to direction

Limit + (Pos) triggered Limit − (Neg) triggered

Positive Motor disabled Motor enabled

Negative Motor enabled Motor disabled

Limits are intended for use with the mechanical switches
typically found in vacuum mechanisms, but other types of
switch, for example, hall effect or optical limit switches can
be interfaced. The high and low logic thresholds are 1.5 V
and 0.55 V respectively. Limit inputs can withstand up to
12 V maximum. The limits input circuit is outlined below for
reference.

If a fault occurs, the motor is stopped and power to the motor is removed. The cause of the fault is indicated via the
red front panel indicator, as shown below, and reflected in the error flags available via the remote interface.

Internal
A hardware or software malfunction inside the SMD4. For
example, user settings have become corrupted and failed
to load properly.
External enable criteria not satisfied
The external enable setting is ‘true’ and the SMD4
requires the external enable signal to be high to enable
the motor. Either supply an enable signal, or if you do not
wish to use the enable input, disable the external enable
setting by setting it to ‘false’, which tells the SMD4 to
ignore the state of the enable signal.

Changing direction

Limits

Faults

Types of fault

Motor temperature
Motor temperature has exceeded 190 °C or a fault has
been detected with the temperature sensor. Excessive
temperature can damage the insulation on the motor
windings, and the SMD4 does not allow the motor to be
driven. The SMD4 shuts down the motor before this can
happen to prevent possible damage to the motor. Wait
for the motor to cool before attempting to run the motor
again.

Motor short
A motor short has been detected. Motor phase-to-phase
and phase-to-ground shorts can be detected by the
SMD4. Inspect the motor and wiring to resolve before
attempting to run the motor again.
Limit hit
Indicator flashes briefly once a second. A limit has been
triggered and has stopped the motor.

Faults may be cleared using the clear command, or by pulling the fault reset pin to the ‘GND’ pin the I/O connector.

The external enable fault is non-latching when in step direction mode; once the external enable state is restored, or
the external enable setting is changed to false, normal operation will resume immediately without the need to clear it
as described above.

INFORMATION: The motor is also disabled if
the temperature sensor is misconnected or
fault in order to protect the motor from
possible damage to the insulation material.

Clearing a fault

The SMD4 is compatible with the AML Device Control software, which can be downloaded from the Software page on
our website: https://arunmicro.com/documents/software/

Connect all SMD4 devices to your computer

Start the AML Device Control software and click ‘Add device’ in the top left corner

USB connected SMD4 devices should automatically appear in the list. Select all devices that you wish to add and click
“Add n selected devices”

Software
Installation and setup

If you intend to ultimately connect via LAN or Serial, start off by using the USB interface to perform
basic setup on the LAN or serial interface first, then once satisfied connect on LAN or Serial as
required.

Multiple instances of the same physical SMD4, but on different interfaces are allowed. For example,
you could plug in the SMD4 with a network cable and USB lead, add the device connected via USB,
configure network settings, then add device again as a network device. This can be useful during
commissioning in establishing a working setup.

https://arunmicro.com/documents/software/

The default layout of the software is shown below.

The speed of auto detection varies by interface quantity of ports on your PC. Detection of USB and LAN
devices is typically quick, whereas detection of devices connected via RS232 or RS485 can be considerably
slower if a large number of COM ports are present on the PC.

The SMD4 network interface has an implementation of SSDP (Simple Service Discovery Protocol) which allows
it to be discovered easily on a network, without knowing it's IP address.

Overview

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-02/tVkimage.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2023-10/download.png

Shows a list of the devices and scripts
in the project. Currently selected
devices are highlighted. Multiple
devices can be selected by holding
down CTRL and clicking. The device
properties panel shows the properties
for the selected device(s).

Right-clicking on an empty area within
the project panel presents a context
menu, with options to add new devices,
new scripts or importing scripts.

The right-click context menu on each
device provides access to functions
such as clearing faults or placing the
selected device into ident mode in
which the green status indicator
flashes.

A status indicator next to each device shows the current status of each device according to these colours:

Colour Description

 Device connected and ready

Bake mode running, limit switch triggered or joystick
connected

 Device in a fault state

 Device disconnected

Select one or more devices in the project panel; their properties are displayed and can be edited here. A blank is
shown for properties which are different across the selected devices. As each property is selected, help text appears at
the bottom of the panel describing the configuration option in more detail.

Some properties allow selection of one of several choices, for example, temperature sensor selection:

Others such as ‘Run current’ simply require a numeric value to be entered
Others allow values to be entered directly, or the three dots button to the right to be clicked. This opens a
window, allowing a more complex value to be input, for example, ‘Acceleration’ allows input in the native
units or seconds:

Project panel

Device properties panel

Controller windows for each device appear in this area. Windows can be arranged as desired and will automatically
‘snap’ to a grid making it easy to keep them neatly organised.

Shows a status summary for the selected device, providing
essential information such as actual velocity, actual
(absolute) position, relative position and error status.

Absolute and relative position counters may be reset using
the icons.

For controlling an SMD4, choose the type of motion and
click start or stop. Multiple SMD4 devices can be controlled
using the motion controls on the ribbon:

Contains buttons for all actions. Within the software, buttons can be hovered over for more information.

SMD4 configuration is maintained in two locations:
1. The SMD4 itself, with the use of the ”Save to device” command. If the “Save to device” command is not used,

settings will revert to their previous values on power cycling.
2. In the software project file.

System work area

Controller window

Be aware that the synchronisation between multiple SMD4s is not specified or guaranteed when controlling
them in this way; delays within the computer, software, and data connection to the SMD4 mean that each
SMD4 will start or stop its motion at a slightly different moment, therefore this option is not suitable for
performing complex co-ordinated movements across multiple axes.

Ribbon

Saving projects

The behaviour of the software in relation to this is as follows:
If the serial number of a connected SMD4 matches that of one in the project file that is open: The
configuration given in the project file prevails, and the SMD4 configuration is synchronised to match that in the
project file. Note that unless you use the save changes to hardware function, the original configuration of the
SMD4 is not overwritten, and will be restored on power cycle or by using the load command to restore the
configuration from flash.

If the serial number of a connected SMD4 does not match any of those in the project file that is
open: The SMD4 is considered a new device in the project, and the project file will be initialised from the
configuration found in the SMD4 itself. After this point, the first behaviour outlined above applies.

The software includes an easy to use script editor, that
allows for sequences to be programmed and executed on
multiple connected SMD4 devices, as well as system level
operations such as adding and removing SMD4 devices
from the project.

The scripting language used is JavaScript; this is powerful,
easy to use and extensively documented. A global ‘smd’
object is made available from which you perform all
interactions with the SMD4s. Type ‘smd.’ and an auto
completion popup appears, showing all available
commands, as well as help documentation for each. Press
the enter key to select an option, then provide any
arguments required.

A brief description of each function/command is presented below the scripting section. Here is an overview of the
scripting area:

The auto completion popup can be shown using the ‘Ctrl-K’ keyboard shortcut.

Information on the available SMD4 device specific commands can be found in section USB of this manual. Serial
command mnemonics will be auto completed by the script editor. The arguments of each scripting function are
identical to those shown in section Command Reference, however, the format of querying and commanding is
different. The example below shows how the SMD4 mode can be set and queried:

smd.Mode(2);
smd.Mode();

// Set the SMD4 mode to 2 (remote)
// Query state of mode

The ribbon contains scripting specific buttons.

INFORMATION: In the first case above, configuration items that require the SMD4 to be in standby will not be
correctly synchronized if the SMD4 is not in standby when the software connects.

Scripting

https://bookstack.vps-da8d40f3.arunmicro.com/link/50#bkmrk-usb
https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/communications-protocol#bkmrk-command-reference

Function Description

Add bool Add(string serial)
Add a new device to the project.
Returns true if the device has been detected and added
to the project.
serial:
 Device serial number.

ClearLog void ClearLog()
Clear command line.

ConnectAll void ConnectAll()
Connect all devices in the project.

Delayms void Delayms(int value)
Delay in milliseconds.
value:
 Minimum: 0
 Maximum: 2^31 -1

DelaySeconds void DelaySeconds(int value)
Delay in seconds.
value:
 Minimum: 0
 Maximum: 2147483

DisconnectAll void DisconnectAll()
Disconnect all devices in the project.

Log void Log(string value)
Print value to the command line.

Name bool Name(string serial, string name)
Change name of the device.
Returns true if the device has been found and name
changed.
serial:
 Device serial number.
name:
 Device new name.

Remove bool Remove(string serial)
Remove a device from the project.
Returns true if the device has been detected and
removed from the project.
serial:
 Device serial number.

RemoveAll void RemoveAll()
Remove all devices from the project.

Select bool Select(string[] devices)
Returns true if all the requested devices have been
selected.
devices:
 Name of the device(s).

Function specific to the SMD4 software

SelectAll void SelectAll()
Select all devices.

SelectNone void SelectNone()
Deselect all devices.

Functions that query the SMD4 and that are not also available as a remote command are listed below.

The order of the array elements matches the order in which the SMD4 devices are selected. For example, suppose the
“X-axis”, “Y-axis” and “Z-axis” named devices were selected with the command “smd.Select(“Z-axis”, ”X-axis”, ”Y-
axis)”, to check the standby flag of the “Z-axis” device, use MotorStandbyFlag()[2]. Notice that array indices are 0
based.

Function Description
BakeActiveFlag bool[] BakeActiveFlag()

Returns true if the bake mode is running.
ConfigurationErrorFlag bool[] ConfigurationErrorFlag()

Returns true if the motor configuration is corrupt.
EmergencyStopFlag bool[] EmergencyStopFlag()

Returns true if the motor is disabled by software.
ExternalEnableFlag bool[] ExternalEnableFlag()

Returns true if the external enable input is high.
ExternalInhibitFlag bool[] ExternalInhibitFlag()

Returns true if the external enable input is disabling the
motor.

IdentModeActiveFlag bool[] IdentModeActiveFlag()
Returns true if the ident mode is active.

JoystickConnectedFlag bool[] JoystickConnectedFlag()
Returns true if the joystick is connected.

LimitNegativeFlag bool[] LimitNegativeFlag()
Returns true if the negative limit is active.

LimitPositiveFlag bool[] LimitPositiveFlag()
Returns true if the positive limit is active.

MotorOverTemperatureFlag bool[] MotorOverTemperatureFlag()
Returns true if the motor temperature is greater than
190 °C.

MotorShortFlag bool[] MotorShortFlag()
Returns true if a motor phase to phase or phase to
ground short has been detected.

MotorStandbyFlag bool[] MotorStandbyFlag()
Returns true if the motor is stationary.

TargetVelocityReachedFlag bool[] TargetVelocityReachedFlag()
Returns true if the motor is at the target step frequency.

TemperatureSensorOpenFlag bool[] TemperatureSensorOpenFlag()
Returns true if the selected temperature sensor is open
circuit.

Note that these all return an array rather than a single value, with each array element corresponding to the
data from one SMD4. Use the array index syntax to access the desired element. This applies regardless of the
number of devices.

For example, if there is only one SMD4 connected, use BakeActiveFlag()[0] to get the state of the bake active
flag for that device.

TemperatureSensorShortedFlag bool[] TemperatureSensorShortedFlag()
Returns true if the selected temperature sensor is
shorted (not applicable to thermocouple)

// Add device with serial number 20054-027
smd.Add("20054-027");

// Set name of device with serial number 20054-027 to MyDevice
smd.Name("20054-027","MyDevice");

// Select device with name MyDevice
smd.Select("MyDevice");

// Set the acceleration and deceleration rate in Hz/s
smd.Acceleration(100);
smd.Deceleration(100);

// Set the acceleration current
smd.AccelerationCurrent(1.044);

// Set the hold current
smd.HoldCurrent(0);

// Set the run current
smd.RunCurrent(0.5);

// Set the start frequency
smd.StartFrequency(10);

// Set the step frequency
smd.StepFrequency(1000);

// Set the frequency at which the drive transitions to full step
smd.MicrostepTransition(500);

// Set the micostep resolution
smd.Resolution(64);

// Select device with name MyDevice
smd.Select("MyDevice");

// Set mode to remote
smd.Mode(2);

// Iterate for 10 times
for (i = 0; i < 10; i++) {
 // Move motor +500 steps
 smd.MoveRelative(500);

 // Wait 2 seconds
 smd.DelaySeconds(2);

 // Move motor -500 steps

Example scripts

Add device, rename and set device properties

Move motor and wait

 smd.MoveRelative(-500);

 // Wait 5 seconds
 smd.DelaySeconds(5);

}

// Select device with name MyDevice
smd.Select("MyDevice");

// Store actual position in a variable
pact = smd.ActualPosition();

// Log result to command line
smd.Log(pact[0]);

// Select device with name MyDevice
smd.Select("MyDevice");

// Store status flags in a variable
status = smd.StatusFlags();

// Log a specific bit status of the selected device to the command line
if(status[0] = status[0] & (0x1 << 6)){
 smd.Log("Motor is in standby");
} else {
 smd.Log("Motor is running");
}

Get value of actual position counter and log to command line

Check if the motor is in standby

The SMD4 offers 3 communication interfaces, USB, Ethernet and Serial. The serial interface is dual mode, and can be
configured for RS232 or RS485. Multiple interfaces can be connected and in use at the same time. All interfaces use a
text-based communication protocol described in section Communications protocol.

This section may only be relevant if you are using terminal software or writing your own application. AML Device
control software interacts with the SMD4 in the same way and requires no specialist knowledge to use. A C# API is also
provided, allowing you to easily integrate communication with the SMD4 into your own C# .NET application.

A reversible USB-C connector is provided.

The SMD4 appears as a virtual COM port on your PC, and will be assigned a designation such as "COM1". Each unique
SMD4 that is connected to the PC will be assigned a new designation. Upon reconnecting a previously known SMD4, it
will typically assume the same designation as when last used, however, this behaviour cannot be guaranteed.

The virtual COM port does not require any particular configuration to function correctly. Typical settings such as baud
rate and parity are not applicable.

Most programming languages include easy built-in methods to read and write data to and from a COM port, for
example, the SerialPort class in the System.IO.Ports namespace in C#, or pySerial in Python. Alternatively, use a
terminal program such as Tera Term to manually type commands and see responses. Remember to set line
termination which is a carriage return followed by line feed (in hexadecimal, 0x0D, 0x0A)

A pair of RJ45 connectors are provided allowing multiple devices to be bussed together if required. This is discussed in
section RS232/RS485. Do not confuse these connectors with the Ethernet connector.

The serial interface can be configured for RS232 or RS485.

If connecting to a PC, a serial port is required. Modern PCs seldom include RS232/485 ports, so typically a USB adapter
or add-in card is required. This appears on the PC as one or more COM ports.

Unlike the virtual COM port provided via the USB interface, the COM port must be configured correctly:

Baud to match that set on the SMD4
1 stop bit
No parity
No flow control

Thereafter, the same notes as for USB apply.

A standard 10/100M ethernet port is provided. It features Auto MDI-X so straight or crossover cable may be used.

The factory default setup enables DHCP, so under normal circumstances, this will assign the network configuration to
the SMD4. Alternatively, use another interface, such as USB, to configure the ethernet port.

As with COM ports, most programming languages provide easy means to open a socket and communicate with network
devices. Alternatively, use a terminal program such as PuTTY to manually type commands and see responses.

The SMD4 uses port 11312 for its text-based communication protocol. Only one connection at a time is supported,
additional connections will be refused.

Remote interfaces

USB

Serial

Configure the mode of operation (RS232 or RS485) before plugging a connector in. Do not make changes to
the mode without first disconnecting both connectors. Undefined behaviour will result if the SMD4 is connected
to an RS485 network when in RS232 mode or vice-versa.

Ethernet

https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/communications-protocol
https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/installation#bkmrk-rs232%252F485

The SMD4 is discoverable on the network using SSDP (Simple Service Discovery Protocol). This makes it possible to
plug the SMD4 into a network, then discover its IP address and so make a connection to it. Alternatively, use another
interface, for example, USB to discover the network configuration.

All – Not SMD4 specific, all devices on the network supporting this command will respond including SMD4

"ssdp:all"

· UPNP Root Device, as above

"upnp:rootdevice"

· Device – Specify domain name, device type and version to match the SMD4 and only SMD4s will respond:

 "urn:schemas-arunmicro-com:device:StepperMotorDrive:1"

"urn:" SSDPR_SCHEMA_DOMAIN_NAME ":device:" SSDPR_SCHEMA_DEVICE_TYPE ":" SSDPR_SCHEMA_VER”

UUID – Specify a UUID and only one device having that UUID should respond. Use this command to get the UUID of
your SMD4.

"uuid:" UUID

Where:

SSDPR_SCHEMA_DOMAIN_NAME "schemas-arunmicro-com"
SSDPR_SCHEMA_DEVICE_TYPE "StepperMotorDrive"
SSDPR_SCHEMA_VER "1"

The SMD4 always responds in this way:

HTTP/1.1 200 OK\r\n

CACHE-CONTROL:max-age=120\r\n

DATE:\r\n

EXT:\r\n

LOCATION:http://10.0.97.6:80/desc.xml\r\n

SERVER:OS/version product/version\r\n

ST:uuid:28254095-7194-11ee-a857-44b7d0c76aa3\r\n

USN:uuid:28254095-7194-11ee-a857-44b7d0c76aa3::urn:schemas-arunmicro-com:device:StepperMotorDrive:1\r\n

\r\n

Note:

Response always starts with http ok
CACHE_CONTROL, DATE and EXT are not used. CACHE-CONTROL has a default value but no meaning
LOCATION is a URL to an xml file containing information as required by UPnP. The SMD4 does not implement a
webserver to allow this file to be retrieved, however the root of the URL gives the IP address of the device
which may be used to address future communications.
SERVER:OS not implemented
ST; this echos the search target sent in the query
USN: gives the uuid and device type info

SSDP

Supported search targets (queries)

Response

A simple text-based protocol is used. Commands are sent to the SMD4, checked and executed, and a response
returned. Data are buffered on receipt and commands are evaluated and executed on a first in first out basis. Although
not a requirement, it is usually easiest to send a command and evaluate the response before sending the next
command.

Commands are in the form (Note that angle brackets are shown for clarity only, they are not part of the protocol):

<address prefix><mnemonic>,<argument 1>,<argument 2>,<argument n>…<CR><LF>

And responses are in the form:

<address prefix>,<SFLAGS>,<EFLAGS>,<data 1>,<data 2>,<data n>…<CR><LF>

If the command executed successfully, or:

<address prefix>,<SFLAGS>,<EFLAGS>,<error code><CR><LF>

If the command failed to execute correctly.

Where:

Item Description

<address prefix> Optional prefix included when multiple SMD4s exist on
the same bus. If not using addressing can be omitted.

<mnemonic> Short sequence of characters representing a command,
case insensitive

<argument n> Zero or more command arguments

<data n> Zero or more response data items

<error code> An error code, see section Error Codes. This includes
both a number and text description of the error to aid
when using the SMD4 via a terminal program.

<SFLAGS> Set of flags representing the status of the SMD4, such as
the state of the limit inputs or whether the joystick is
connected. See section Status Flags

<EFLAGS> Set of flags representing the error state of the SMD4,
such as invalid mnemonic, or motor over-temperature
fault.

<CR><LF> Message terminator; carriage return followed by line-
feed (0x0D,0x0A)

This section is only applicable where multiple SMD4s are connected together on the same bus, using the serial
interface in either RS232 or RS485 mode. The addressing logic described in this section works for all interfaces, but is
redundant for USB and the network interface since those inherently implement addressing.

When multiple SMD4s exist on the same bus, a mechanism is required to allow them to be addressed uniquely or as a
group. Likewise, only one device must use the bus at a time otherwise bus contention results when more than one
device tries to drive the bus at a time.

This is accomplished via the address prefix, which is the at '@' symbol followed by a numeric address:

0 = Broadcast address, all SMD4s execute the command, but no response is sent

Communications protocol

Addressing

https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-error-codes
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-status-flags-%2528sflags

1 to 247 = Valid secondary address range. The addressed SMD4 executes the command and returns a
response
Any address outside this range is invalid, and the packet is silently ignored

Upon receipt of the first complete packet with an address prefix, the SMD4 enters addressing mode, and behaviour
then changes as follows, until restart.

Malformed packets are silently ignored. This includes any packet that does not include the addressing prefix
but that is otherwise valid.
Broadcast packets are silently parsed and executed. A response is not sent, and as such it cannot be
determined whether the command executed successfully without submitting a further query addressed
directly to the target SMD4.
Packets that are otherwise correctly formed but having a target address that does not match that of the
SMD4 are silently ignored.

All elements are comma-separated, except for the message terminator which immediately follows the last item. A
response is always sent on receipt of a message terminator except where addressing criteria are not met. If an
argument was supplied with a command, for example, to set a value, the value set will be returned in the response
and serves as an additional confirmation of the command having executed as expected.

Many commands accept a real number argument when the underlying quantity is an integer, or finite set of real
numbers. In this case, the supplied value being otherwise acceptable is rounded to the closest integer or real number
from the allowed set, and it is this value that is returned in the response.

No data items to return
If there are no data items as part of a response, only the SFLAGS and EFLAGS are returned. If an error occurred, then
this will be reflected in the EFLAGS.

Arguments may be one or a mix of the following types, depending on the command. Data returned by the SMD4 uses
the same types, which are always presented as indicated in the “SMD4 response” column.

Type Name Description Example argument
values

SMD4 response

INT Integer Integer value, with or
without sign

100, -10, +7 Sign included for
negative values only.
E.g. 100, -10

UINT Unsigned integer Unsigned integer
value, no sign.
Hexadecimal
representation may
also be used, case
insensitive

99, 1000, 0xA74F,
0xd7

Numeric format. E.g.
100, 200 Except for
status and error flags
which are returned in
upper case 2-byte
hexadecimal format,
E.g. 0x1234, 0xA4DE

FLOAT Real number Real number, with or
without sign.
Scientific format may
also be used, case
insensitive

10.23, 100e-3,
100E4, 10

Scientific format,
with 5 places after
the decimal point
and a 2-digit
exponent E.g.
1.23000E+04,
5.76159E-10

STRING ASCII string ASCII string,
consisting of
characters 0x20 to
0x7E inclusive

Abc123, 78-%^A ASCII string, E.g.
"1234 abc", "10%"

Comma separation

Argument types

BOOL Boolean Binary, true/false
value

0, 1 E.g. 0, 1

DOTTED DECIMAL Dotted decimal IPV4 address or
mask, four numbers
separated by dots.

192.168.0.1 E.g. an IP address
192.168.0.1 or a net
mask
255.255.255.100

Error flags are reported by the device in hexadecimal format as explained above. E.g. a value of 0x0002 means bit 1 is
set (TOPEN), indicating that the device has been disabled due to an open circuit temperature sensor.

These indicate error conditions and are latching (i.e. remain set even after the error condition that caused them no
longer persists). Reset the fault using the clear command, or the reset fault input. The motor is disabled if one or more
error flags are set.

Bit Name Description

0 Temp Short Selected temperature sensor is
short-circuited (Not applicable to
Thermocouple)

1 Temp Open Selected temperature sensor is open
circuit

2 Temp Over Selected temperature sensor is
reporting temperature > 190 °C and
power has been removed from the
motor to protect the windings

3 Motor Short Motor phase to phase or phase to
ground short has been detected

4 External Disable Motor disabled via external input

5 Emergency Stop Motor disabled via software

6 Configuration Error Motor configuration is corrupted

7 Encoder error Encoder fault (applicable only when
optional encoder module installed)

8 Boost UVLO The internal 48 V to 67 V boost
circuit is disabled because input
voltage has fallen too low.

9 SDRAM Memory self-test failed.

10-15 Reserved Reserved, read as '0'

Bit Name Description

0 Joystick Connected Joystick is connected (determined via
state of the

1 Limit Negative Limit input is active (Note that the
polarity is configurable, so active can
mean high or low signal level)

Flags

Error flags (EFLAGS)

Status flags (SFLAGS)

2 Limit Positive Limit input is active (Note that the
polarity is configurable, so active can
mean high or low signal level)

3 External Enable External enable input state

4 Ident Ident mode is active, green status
indicator is flashing to aid in
identifying device

5-6 Reserved Reserved, read as '0'

7 Standby Motor stationary. Check this bit
before performing a function that
requires the motor to be stopped
first, such as changing mode

8 Baking Bake mode running

9 Target Velocity Reached Set when the motor is at target
velocity

10 Encoder Present Encoder module fitted

11 Boost Operational Internal 48 V to 67 V boost supply is
operational

12-15 Reserved Reserved, read as '0'

Error Description

-1 (Stop motor first) Several actions, such as changing resolution or operating
mode require that the motor is stopped first. Trying to
run such a command before the motor has come to a
stop and the standby flag in the status register is set will
result in this error.

-2 (Argument validation) An argument supplied to the command is invalid, for
example, it is outside the allowable range.

-3 (Unable to get) The command is write-only, read is not valid. This applies
to commands such as RUNV where a read would have no
meaning.

-5 (Action failed) The command failed to execute due to an internal error,
for example, the internal flash in which settings are
stored has reached the end of life and data cannot be
reliably written to it.

-6 (Not possible in mode) The command is not applicable to this mode, for
example, trying to start bake using RUNB when not in
bake mode.

-7 (Not possible when motor disabled) The motor is disabled (due to a fault, or external enable)
and the command is one that starts motion, for example
RUNV.

-101 (Argument type) The argument is of the wrong type, for example a non-
integer value was given where an integer value was
required.

-102 (Argument count) The argument count is incorrect, either too few or too
many arguments have been supplied.

Error codes

-103 (Invalid Mnemonic) Command mnemonic is not valid

-104 (Packet error) Packet is malformed

Mnemonic Description R W Arguments

SYS:IDENT Rapidly blinks status
indicator

● ● BOOL

SYS:MODE Mode of operation ● ● UINT

SYS:JSMODE Joystick mode ● ● UINT

SYS:AUTOJS Auto switch to
Joystick mode on JS
connect

● ● BOOL

SYS:EXTEN External enable used ● ● BOOL

SYS:CLR Clear error flags ●

SYS:FLAGS Get status and error
flags

●

SYS:FLAGSV Get human readable
summary of status
and error flags

●

SYS:FW Read the firmware
version number

● STRING

SYS:LOAD Load saved
configuration

 ●

SYS:LOADFD Load factory default
settings

 ●

SYS:PROG Enter programming
mode

●

SYS:RESET Restart the SMD4 ●

SYS:BSN Get motherboard
serial number

● STRING

SYS:PSN Get product serial
number

● STRING

SYS:UPTIME Get uptime ● UINT

SYS:UUID Get UUID ●

Mnemonic Description R W Arguments

MOTOR:RUNV Move motor velocity
mode

 ● STRING

MOTOR:RUNA Move motor absolute
positioning mode

 ● INT

MOTOR:RUNR Move motor relative
positioning mode

 ● INT

Quick reference
General

Command movement

https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ident---blinks-statu
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mode---choose-mode-o
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-jsmode-%25E2%2580%2593-joystick-mo
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-%25C2%25A0-15
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk--4
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%253Aclr-%25E2%2580%2593-clear-faul
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%253Aflags-%25E2%2580%2593-get-stat
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%253Aflagsv-%25E2%2580%2593-get-sta
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%253Afw-%25E2%2580%2593-get-firmwar
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%253Aload-%25E2%2580%2593-load-last
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%253Aloadfd-%25E2%2580%2593-load-fa
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%253Aprog-%25E2%2580%2593-enter-pro
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%253Areset%25E2%2580%2593-restart-t
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%253Absn-%25E2%2580%2593-get-mother
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%253Apsn-%25E2%2580%2593-get-produc
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%253Auptime-%25E2%2580%2593-get-upt
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%253Auuid-%25E2%2580%2593-get-uuid
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-%25C2%25A0-6
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-runa-%25E2%2580%2593-run%252C-absolute
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-runr---run%252C-relative

MOTOR:RUNH Start home mode
procedure

 ● STRING

MOTOR:STOP Bring motor to a stop
according to the
current profile

 ●

MOTOR:SSTOP Stop motor in 1
second on full step
position
independently of the
current motion
profile

 ●

MOTOR:ESTOP Emergency stop.
Stops the motor
immediately

 ●

Mnemonic Description R W Arguments

MOTOR:TSEL Temperature sensor
selection, T/C or RTD

● ● UINT

MOTOR:T Temperature in °C ●

MOTOR:IR Run current in amps ● ● FLOAT

MOTOR:IA Acceleration current
in amps

● ● FLOAT

MOTOR:IH Hold current in amps ● ● FLOAT

MOTOR:PDDEL Power down delay in
milliseconds

● ● FLOAT

MOTOR:IHD Delay per current
reduction step

● ● FLOAT

MOTOR:F Freewheel mode ● ● UINT

MOTOR:RES Resolution ● ● UINT

MOTOR:SDMODE Step/direction mode ● ●

Mnemonic Description R W Arguments

LIMIT:EN Global enable ● ● BOOL

LIMIT:EN+ Limit positive (Limit
1) enable

● ● BOOL

LIMIT:EN- Limit negative (Limit
2) enable

● ● BOOL

LIMIT:POL- Limit n polarity (0 for
active high, 1 for
active low)

● ● BOOL

LIMIT:POL+ Limit n polarity (0 for
active high, 1 for
active low)

● ● BOOL

Motor

Limit inputs

https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-motor%253Arunh---run%252C-ho
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-stop-%25E2%2580%2593-stop-motor
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sstop-%25E2%2580%2593-stop-motor-i
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-estop-%25E2%2580%2593-emergency-st
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-tsel-%25E2%2580%2593-temperature-s
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-tmot-%25E2%2580%2593-motor-tempera
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ir-%25E2%2580%2593-run-current
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ia-%25E2%2580%2593-acceleration-cu
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ih-%25E2%2580%2593-hold-current
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-pddel-%25E2%2580%2593-power-down-d
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ihd-%25E2%2580%2593-current-reduct
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-f-%25E2%2580%2593-freewheel-mode
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-%25C2%25A0-24
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-motor%253Asdmode---step%252F
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-l-%25E2%2580%2593-limits-global-en
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-limit%253Aen-%252C-limit%253Aen%252B
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-limit%253Aen-%252C-limit%253Aen%252B
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-lp%252B%252C-lp--individual-
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-lp%252B%252C-lp--individual-

LIMIT:POL Limit polarity for
both Limit positive
(Limit 1) and
negative (Limit 2), (0
for active high, 1 for
active low)

 ● BOOL

LIMIT:STOPMODE How to stop on limit
being triggered

● ● BOOL

Mnemonic Description R W Arguments

MOTOR:AMAX Acceleration in Hz/s ● ● FLOAT

MOTOR:DMAX Deceleration in Hz/s ● ● FLOAT

MOTOR:VSTART Start frequency in Hz ● ● FLOAT

MOTOR:VSTOP Stop frequency in Hz ● ● FLOAT

MOTOR:VMAX Target step
frequency in Hz

● ● FLOAT

MOTOR:VACT Actual frequency in
Hz

●

MOTOR:PACT Actual position in
steps

● ● FLOAT

MOTOR:PREL Relative position in
steps

● ● FLOAT

TZW Time to stop before
moving again in
seconds

● ● FLOAT

MOTOR:THIGH Full step – micro
stepping transition

● ● FLOAT

Mnemonic Description R W Arguments

MOTOR:EDGE Which edges of step
input to generate a
step on

● ● UINT

MOTOR:INTERP Interpolate step
input to 256 micro
steps

● ● BOOL

Mnemonic Description R W Arguments

BAKE:T Bake temperature
setpoint

● ● UINT

BAKE:RUN Start bake ●

BAKE:ELAPSED Get the elapsed bake
time

●

Profile

Step/Direction

Bake

Boost

https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-lp-%25E2%2580%2593-global-limit-po
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-lsm-%25E2%2580%2593-limit-stop-mod
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-amax---acceleration
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-dmax---deceleration
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-vstart-%25E2%2580%2593-start-frequ
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-vstop-%25E2%2580%2593-stop-frequen
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-vmax-%25E2%2580%2593-step-frequenc
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-vact-%25E2%2580%2593-actual-freque
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-pact-%25E2%2580%2593-actual-positi
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-prel-%25E2%2580%2593-relative-posi
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-tzw-%25E2%2580%2593-zero-wait-time
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-thigh-%25E2%2580%2593-microstep-tr
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-edge-%25E2%2580%2593-edge-to-step-
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-interp-%25E2%2580%2593-step-interp
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-baket-%25E2%2580%2593-bake-tempera

Mnemonic Description R W Arguments

BOOST:EN Boost enable ● ● BOOL

Mnemonic Description R W Arguments

COMS:NET:DHCP Gets or sets a value
indicating whether
DHCP is enabled

● ● BOOL

COMS:NET:GATEWAY Gets or sets the
gateway address

● ● DOTTED DECIMAL

COMS:NET:NETMASK Gets or sets the
subnet mask

● ● DOTTED DECIMAL

COMS:NET:IP Gets or sets the IP
address

● ● DOTTED DECIMAL

COMS:NET:IPCONF Outputs a summary
of network
configuration in
human readable
form

●

COMS:NET:LINK Gets a value
indicating whether
the ethernet
interface link is up

● BOOL

COMS:NET:MAC Gets the Ethernet
interface MAC
address

●

COMS:SERIAL:BAUD Gets or sets the baud
rate

● ● UINT

COMS:SERIAL:MODE Gets or sets the
serial coms mode,
either RS232 or
RS485

● ●

COMS:SERIAL:RS485DELGets or sets a value
in milliseconds
specifying the delay
to execute between
receipt of a
command from the
host and the client
(SMD4) sending the
response

● ● UINT

COMS:SERIAL:TERM Gets or sets a value
indicating whether
RS485 line
termination should
be used

● ● BOOL

COMS:SERIAL:SLAVEADDRGets or sets the
slave address

● ● UINT

Coms

Command reference

https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-boost%253Aen-%25E2%2580%2593-boost-ena
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%253Anet%253Adhcp-%25E2%2580%2593-dhcp
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%253Anet%253Agateway-%25E2%2580%2593-g
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%253Anet%253Anetmask-%25E2%2580%2593-s
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%253Anet%253Aip-%25E2%2580%2593-ip-add
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%253Anet%253Aipconf-%25E2%2580%2593-ge
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%253Anet%253Alink-%25E2%2580%2593-get-
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%253Anet%253Amac-%25E2%2580%2593-get-m
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%253Aserial%253Abaud-%25E2%2580%2593-b
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%253Aserial%253Amode-%25E2%2580%2593-r
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%253Aserial%253Ars485del
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%253Aserial%253Aterm-%25E2%2580%2593-t
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%253Aserial%253Aslaveadd

Gets or sets a value indicating whether the identify function is enabled. When set to true, the green status light on the
front of the product flashes. This can be used to help identify one device amongst several.

Command: SYS:IDENT, Enable<CR><LF>
Query: SYS:IDENT<CR><LF>

Arguments

Enable BOOL

The enable state.

[0: Disable]
1: Enable

Returns

The enable state, as above.

Examples

Tx: SYS:IDENT,1<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>
Tx: SYS:IDENT<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Set ident function on

// Query state of ident function

Gets or sets the operating mode. See section Operating Modes for an explanation of each mode.

Command: SYS:MODE, Value<CR><LF>
Query: SYS:MODE<CR><LF>

Arguments

Value UINT

The operating mode.

0: Step/direction
[1: Remote]
2: Joystick
3: Bake
4: Home

Returns

The mode, as above, followed by a space and the name of the mode in brackets.

Remarks

If the motor is moving when attempting to change the mode, a stop motor first error is returned and the mode is
unchanged.

Examples

Tx: SYS:MODE,2<CR><LF>
Rx: 0x0000,0x0000,2 (Remote)<CR><LF>
Tx: SYS:MODE<CR><LF>
Rx: 0x0000,0x0000,1 (Remote)<CR><LF>

// Set mode to remote

// Query state of mode

General

 SYS:IDENT - Rapidly blinks status indicator (R/W)

SYS:MODE - Choose mode of operation

https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-operating-modes

Gets or sets the joystick mode. Choose between single step, which allows precise single steps or continuous rotation,
or continuous which requires only a single button press to make the motor move.

Command: SYS:JSMODE, Mode<CR><LF>
Query: SYS:JSMODE<CR><LF>

Arguments

Mode UINT

The joystick mode.

[0: Single step]
1: Continuous

Returns

The mode, as above.

Remarks

Set requires the motor to be in standby, otherwise, a stop motor first error will be returned.

In single step mode, a brief button press (< 0.5 s) will execute one step in that direction, while pressing the button for
> 0.5 s will cause the motor to accelerate up to slewing speed and continue to rotate in that direction until the button
is released, at which point the motor will decelerate to a stop.

In continuous mode, a brief button press will trigger the motor to accelerate up to slewing speed. A subsequent press
of the same button causes it to decelerate to a stop. If, for example, the clockwise button is pressed while the motor is
rotating anti-clockwise, the motor will first decelerate to a stop before changing direction.

Examples

Tx: SYS:JSMODE,1<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>
Tx: SYS:JSMODE<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Set to continuous

// Query state

Gets or sets the joystick auto select function. When set to true, the product switches to joystick mode automatically
when connecting a joystick.

Command: SYS:AUTOJS, Enable<CR><LF>

Query: SYS:AUTOJS<CR><LF>

Arguments

Enable BOOL

The enable state.

0: Disable
[1: Enable]

Returns

The enable state, as above.

Examples

SYS:JSMODE – Joystick mode

SYS:AUTOJS – Auto switch to joystick mode

Tx: SYS:AUTOJS,1<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>
Tx: SYS:AUTOJS<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Enable

// Query state

Gets or sets a value indicating whether the external enable signal should be respected. If not using the external enable
and it remains disconnected, set to false.

Command: SYS:EXTEN, Used<CR><LF>
Query: SYS:EXTEN<CR><LF>

Arguments

Used BOOL

External enable signal.

[0: False]
1: True

Returns

True if the external enable signal is used.

Remarks

The external enable input requires a voltage to be applied between SDE COM and EN on the I/O connector which may
be inconvenient if you do not wish to use the enable input. In that case, disable the enable input by sending this
command with the argument set to false.

Examples

Tx: SYS:EXTEN,1<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>
Tx: SYS:EXTEN<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Enable

// Query state

Clear all error flags.

Command: SYS:CLR<CR><LF>

Examples

Tx: SYS:CLR<CR><LF>
Rx: 0x0000,0x0000<CR><LF>

// Clear errors

Gets status and error flags.

Query: SYS:FLAGS<CR><LF>

Remarks

None.

Examples

SYS:EXTEN – External enable used

SYS:CLR – Clear faults

SYS:FLAGS – Get status and error flags

Tx: SYS:FLAGS<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Get flags

Gets a human readable summary of status and error flags.

Query: SYS:FLAGSV<CR><LF>

Remarks

None.

Examples

Tx: SYS:FLAGSV<CR><LF>
Rx: 0x088e,0x0000,<CR><LF>

-------Status flags------
[]JsCon
[X]LimitNeg
[X]LimitPos
[X]Exten
[]Ident
[]reserved1
[]reserved2
[X]Standby
[]Baking
[]TargetVelocityReached
[]EncoderPresent
[X]BoostOperational
[]BoostDisableJumper
[]reserved3
[]reserved4
[]reserved5

-------Error flags-------
[]TempShort
[]TempOpen
[]TempOver
[]MotorShort
[]ExternalInhibit
[]EmergencyStop
[]ConfigError
[]EncoderError
[]BoostUVLO
[]reserved1
[]reserved2
[]reserved3
[]reserved4
[]reserved5
[]reserved6
[]reserved7

Gets firmware version string.

Query: SYS:FW<CR><LF>

Returns

SYS:FLAGSV – Get status and error flags summary

SYS:FW – Get firmware version

Firmware version STRING

Remarks

None.

Examples

Tx: SYS:FW<CR><LF>
Rx: 0x088e,0x0000,24044.12<CR><LF>

// Query

Load the last saves configuration.

Command: SYS:LOAD<CR><LF>

Remarks

None.

Examples

Tx: SYS:LOAD<CR><LF>
Rx: 0x088e,0x0000<CR><LF>

Load the factory default configuration.

Command: SYS:LOADFD<CR><LF>

Remarks

Use the store command if you want to persist the changes.

Examples

Tx: SYS:LOADFD<CR><LF>
Rx: 0x088e,0x0000<CR><LF>

Reboot the SMD4 into programming mode. Used by AML device control software to initiate a firmware update. Power
cycle to cancel this mode.

Command: SYS:PROG<CR><LF>

Remarks

There is no response to this command.

Examples

Tx: SYS:PROG<CR><LF>

Reboot the SMD4.

Command: SYS:RESET<CR><LF>

SYS:LOAD – Load last stored settings

SYS:LOADFD – Load factory default settings

SYS:PROG – Enter programming mode

SYS:RESET– Restart the SMD4

Remarks

There is no response to this command.

Examples

Tx: SYS:RESET<CR><LF>

Gets the serial number of the motherboard.

Query: SYS:BSN<CR><LF>

Returns

Motherboard serial number STRING

Remarks

None.

Examples

Tx: SYS:BSN<CR><LF>
Rx: 0x088e,0x0000,1234ABCD<CR><LF>

// Query

Gets the serial number of the product. This matches the serial number label installed on the product.

Query: SYS:PSN<CR><LF>

Returns

Product serial number STRING

Remarks

None.

Examples

Tx: SYS:PSN<CR><LF>
Rx: 0x088e,0x0000,00000-000<CR><LF>

// Query

Gets the elapsed time since start up in milliseconds.

Query: SYS:UPTIME<CR><LF>

Returns

Uptime UINT

Remarks

None.

Examples

SYS:BSN – Get motherboard serial number

SYS:PSN – Get product serial number

SYS:UPTIME – Get uptime

Tx: SYS:UPTIME<CR><LF>
Rx: 0x088e,0x0000,10000<CR><LF>

// Query
// Uptime is 10 seconds

Gets a unique ID number which is included in the data reported when using SSDP. See SSDP. Not the same as the MAC
address.

Query: SYS:UUID<CR><LF>

Returns

UUID UUID

Remarks

None.

Examples

Tx: SYS:UUID<CR><LF>
Rx: 0x088e,0x0000,f4562fb1-d002-11ee-b3e5-
44b7d0c71675<CR><LF>

// Query

Start continuous rotation in specified direction.

Command: MOTOR:RUNV, Direction <CR><LF>

Arguments

Direction String

Direction:

‘+’: Positive, step count increases
‘-’: Negative, step count decreases

Remarks

None.

Examples

Tx: MOTOR:RUNV,+<CR><LF>
Rx: 0x0000,0x0000<CR><LF>
Tx: MOTOR:RUNV,-<CR><LF>
Rx: 0x0000,0x0000<CR><LF>

// Spin motor in positive direction

// Spin motor in negative direction

Move the motor to a specified absolute position.

Command: MOTOR:RUNA, Absolute <CR><LF>

 Arguments

Absolute INT

Minimum: -8388608

SYS:UUID – Get UUID

Command movement

MOTOR:RUNV – Run, velocity

MOTOR:RUNA – Run, absolute position

Maximum: 8388607

Remarks

None.

Examples

Tx: MOTOR:RUNA,1000<CR><LF>
Rx: 0x0000,0x0000<CR><LF>
Tx: MOTOR:RUNA,-1000<CR><LF>
Rx: 0x0000,0x0000<CR><LF>

// Drive motor to step position 1000

// Drive motor to step position -1000

Move the motor a specified number of steps, relative to the current position.

Command: MOTOR:RUNR, Relative <CR><LF>

 Arguments

Relative INT

Minimum: -8388608
Maximum: 8388607

Remarks

None.

Examples

Tx: MOTOR:RUNR,2000<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>
Tx: MOTOR:RUNR,-2000<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Move motor in positive direction by 2000 steps

// Move motor in negative direction by 2000 steps

Initiate a homing sequence to the specified limit.

Command: MOTOR:RUNH, Direction<CR><LF>

Arguments

Direction String

Direction:

‘+’: Home towards positive limit, step count increases
‘-’: Home towards negative, step count decreases

Remarks

None.

Examples

Tx: MOTOR:RUNR,2000<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>
Tx: MOTOR:RUNR,-2000<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Move motor in positive direction by 2000 steps

// Move motor in negative direction by 2000 steps

MOTOR:RUNR - Run, relative position

MOTOR:RUNH - Run, home

Stop the motor, decelerating according to the current profile

Command: MOTOR:STOP<CR><LF>

Remarks

During the deceleration phase that stops the motor, any modifications to the acceleration or deceleration interrupt the
stopping phase. Re-send the command to restart the motor stopping phase.

Examples

Tx: MOTOR:STOP<CR><LF>
Rx: 0x0000,0x0000<CR><LF>

// Stop the motor

Decelerates the motor to a stop within 1 second, disregarding the current profile to do so.

Command: MOTOR:SSTOP<CR><LF>

Remarks

This command does not consider the deceleration set in the profile. Instead, it calculates the deceleration required to
stop in 1 second, according to the actual velocity. The motor will stop in a full step position. Steps may be lost if the
load requires greater than this duration to stop.

Examples

Tx: MOTOR:SSTOP<CR><LF>
Rx: 0x0000,0x0000<CR><LF>

// Stop the motor in 1 seconds

Stop motor immediately disregarding deceleration profile and disable the motor. This should not be relied on as a
safety interlock.

Command: MOTOR:ESTOP<CR><LF>

Remarks

The motor may stop on a fractional step position, but this is irrelevant as motor power is removed and the motor will
snap to a full step position. Steps may be lost.

Examples

Tx: MOTOR:ESTOP<CR><LF>
Rx: 0x0000,0x0000<CR><LF>

// Stop the motor immediately

Gets or sets the motor temperature sensor type.

Command: MOTOR:TSEL, SensorType<CR><LF>

Query: TSEL<CR><LF>

Arguments

SensorType UINT

MOTOR:STOP – Stop motor

MOTOR:SSTOP – Stop motor in <=1 s

MOTOR:ESTOP – Emergency stop

Motor

MOTOR:TSEL – Temperature sensor selection

Motor temperature sensor type.

[0: Thermocouple]
1: RTD

Returns

Selected temperature sensor type, as above.

Remarks

To protect the motor from possible damage, the motor is disabled if the temperature sensor is faulty or missing. The
response is not immediate, and several seconds may elapse between emergence of a fault and the motor being
disabled.

Examples

Tx: MOTOR:TSEL,0<CR><LF>
Rx: 0x0000,0x0000,0<CR><LF>
Tx: MOTOR:TSEL<CR><LF>
Rx: 0x0000,0x0000,0<CR><LF>

// Select thermocouple sensor

// Get selected sensor, returning 0 for thermocouple

Get the motor temperature in °C.

Query: MOTOR:T<CR><LF>

Returns

Motor temperature as integer in °C.

Remarks

The reported temperature is intended only for the purposes of monitoring motor temperature and should not be relied
upon for any other purpose within the vacuum system.

Examples

Tx: MOTOR:T<CR><LF>
Rx: 0x0000,0x0000,25<CR><LF>

// Get motor temperature
// Response is 25 degrees Celsius

Gets or sets the motor run current.

Command: MOTOR:IR, Current<CR><LF>
Query: MOTOR:IR<CR><LF>

Arguments

Current FLOAT

The motor run current in amps rms.

[Default: 1.044]
Minimum: 0
Maximum: 1.044

Returns

The motor run current in amps rms, rounded to the closest multiple of 1.044 A / 31 (approx. 33 mA).

Remarks

MOTOR:T – Motor temperature

MOTOR:IR – Run current

Run current must be set equal to or smaller than acceleration current. Acceleration current is automatically adjusted to
be equal to run current, if a change to run current makes it greater than acceleration current.

Examples

Tx: MOTOR:IR,1<CR><LF>
Rx: 0x0000,0x0000,1.0000E+00<CR><LF>
Tx: MOTOR:IR<CR><LF>
Rx: 0x0000,0x0000,1.0000E+00<CR><LF>

// Set run current to 1 A

// Query run current

Gets or sets the motor current applied during acceleration or deceleration.

Command: MOTOR:IA, Current<CR><LF>
Query: MOTOR:IA<CR><LF>

Arguments

Current FLOAT

The motor acceleration current in amps rms.

[Default: 1.044]
Minimum: 0
Maximum: 1.044

Returns

The motor acceleration current in amps rms, rounded to the closest multiple of 1.044 A / 31 (approx. 33 mA).

Remarks

Acceleration current must be set equal to or greater than run current. Acceleration current is not adjusted to match run
current if acceleration current is smaller than run current.

Examples

Tx: MOTOR:IA,1.044<CR><LF>
Rx: 0x0000,0x0000,1.0440E+00<CR><LF>
Tx: MOTOR:IA<CR><LF>
Rx: 0x0000,0x0000,1.0440E+00<CR><LF>

// Set acceleration current to 1.044 A

// Query acceleration current

Set or query the motor hold current. If your application allows it, set MOTOR:PDDEL, MOTOR:IHD and MOTOR:IH to zero
in order to reduce run current to zero as quickly as possible after stopping which minimises motor temperature rise.

Command: MOTOR:IH, Current<CR><LF>
Query: MOTOR:IH<CR><LF>

Arguments

Current FLOAT

The motor hold current in amps rms.

[Default: 0.1]
Minimum: 0
Maximum: 1.044

Returns

The motor hold current in amps rms, rounded to the closest multiple of 1.044 A / 31 (approx. 33 mA).

MOTOR:IA – Acceleration current

MOTOR:IH – Hold current

https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-pddel-%25E2%2580%2593-power-down-d
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ihd-%25E2%2580%2593-current-reduct
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ih-%25E2%2580%2593-hold-current

Examples

Tx: MOTOR:IH,0.5<CR><LF>
Rx: 0x0000,0x0000,5.0000E-01<CR><LF>
Tx: MOTOR:IH<CR><LF>
Rx: 0x0000,0x0000,5.0000E-01<CR><LF>

// Set hold current to 0.5 A

// Query hold current

Gets or sets the delay time in seconds between stand still occurring and the motor current being reduced from the
acceleration current to the hold current. The range is 0 to 5.5 seconds, with approximately 8 bit / 20 ms resolution. See
also DelayPerCurrentReductionStep.

Refer to Figure 1. If your application allows it, set MOTOR:PDDEL, MOTOR:IHD and MOTOR:IH to zero in order to reduce
run current to zero as quickly as possible after stopping which minimises motor temperature rise.

Command: MOTOR:PDDEL, Duration<CR><LF>
Query: MOTOR:PDDEL<CR><LF>

Arguments

Duration FLOAT

The power-down delay in seconds.

[Default: 0]
Minimum: 0
Maximum: 5.5

Returns

The power-down delay rounded to the closest settable value.

Examples

Tx: MOTOR:PDDEL,100E-3<CR><LF>
Rx: 0x0000,0x0000,1.0000E-01<CR><LF>
Tx: MOTOR:PDDEL<CR><LF>
Rx: 0x0000,0x0000,1.0000E-01<CR><LF>

// Set to 100 ms

// Query

Gets or sets the delay in seconds per current reduction step that occurs when run current is reduced to hold current.
Non-zero values result in a smooth reduction in current which reduces the chance of a jerk upon power down. The
range is 0 to 328 ms, with a resolution of 4 bits or approx. 20 ms. Current setting has a resolution of 5 bits, or 32 steps,
and consequently the current reduction process will only have as many steps as exist between the configured run and
hold current. See also MOTOR:PDDEL.

See Figure 1. If your application allows it, set MOTOR:PDDEL, MOTOR:IHD and MOTOR:IH to zero in order to reduce run
current to zero as quickly as possible after stopping which minimises motor temperature rise.

Command: MOTOR:IHD, Duration<CR><LF>

Query: MOTOR:IHD<CR><LF>

Arguments

Duration FLOAT

The delay per current reduction step in seconds.

[Default: 0]
Minimum: 0
Maximum: 328 ms

MOTOR:PDDEL – Power down delay

MOTOR:IHD – Delay per current reduction step

https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ihd-%25E2%2580%2593-current-reducthttps://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ihd-%25E2%2580%2593-current-reduct
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ih-%25E2%2580%2593-hold-current
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-pddel-%25E2%2580%2593-power-down-d
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-pddel-%25E2%2580%2593-power-down-d
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ihd-%25E2%2580%2593-current-reduct
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ih-%25E2%2580%2593-hold-current

Returns

The delay per current reduction step in seconds.

Remarks

See also section Going to standby

Examples

Tx: MOTOR:IHD,328E-3<CR><LF>
Rx: 0x0000,0x0000,3.2800E-01<CR><LF>
Tx: MOTOR:IHD<CR><LF>
Rx: 0x0000,0x0000,3.2800E-01<CR><LF>

// Set IHD to 328 ms

// Query IHD

Gets or sets the freewheel mode. For maximum passive braking use phases shorted. Use freewheel to electrically
disconnect the motor and allow it to freewheel. Hold current must be set to zero for this option to work.

The chosen mode becomes active after a time period specified by ‘PDDEL’ and ‘IHD’

Command: MOTOR:F, Mode<CR><LF>

Query: MOTOR:F<CR><LF>

Arguments

Mode UINT

The freewheel mode:

0: Normal
1: Freewheel
[2: Phases shorted to GND]

Returns

The freewheel mode selection, as above.

Remarks

Use the freewheel mode to allow the motor shaft to spin freely when the motor current is zero. The phases shorted to
GND option supplies no power to the motor, but by shorting the phases together a holding torque is produced, and the
motor shaft offers considerable resistance to movement. This is enough in many applications to remove the need for
any holding current, with the benefit that no heat is generated because the motor phases are not energised.

Examples

Tx: MOTOR:F,1<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>
Tx: MOTOR:F<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Set to freewheel mode
// motor shaft can be turned easily

// Query

Gets or sets the microstep resolution.

Command: MOTOR:RES, Resolution<CR><LF>

Query: MOTOR:RES<CR><LF>

 Arguments

MOTOR:F – Freewheel mode

MOTOR:RES - Resolution

https://bookstack.vps-da8d40f3.arunmicro.com/link/10#bkmrk-going-to-standbyperi

Resolution UINT

The microstep resolution as an integer.

[Default: 256]
Possible values: 8, 16, 32, 64, 128, 256

 Returns

The microstep resolution, as above.

Remarks

Motor must be in standby to set the resolution.

The resolution applies globally, including for the step/direction interface. Each step on the step/direction interface
generates a 1/8, 1/16, 1/32 etc step according to the resolution set here.

Above a configurable step frequency, the drive switches from the microstepping resolution specified here to full step
mode in any case. See section THIGH

Examples

Tx: MOTOR:RES,256<CR><LF>
Rx: 0x0000,0x0000,256<CR><LF>
Tx: MOTOR:RES<CR><LF>
Rx: 0x0000,0x0000,256<CR><LF>

// Set resolution to 256

// Query

Gets of sets the step/direction mode. In normal mode, edges on the step input generate steps according to the edge
setting, see <edge>. In triggered mode, continuous motion is triggered by an edge on the step input; this is akin to
how continuous mode works for the joystick, see <joystick continuous mode>

Command: MOTOR:SDMODE, Mode<CR><LF>

Query: MOTOR:SDMODE<CR><LF>

 Arguments

Mode ENUM

Mode

[0: Normal]
1: Triggered

 Returns

Mode ENUM

Remarks

None.

Examples

Tx: MOTOR:SDMODE,0<CR><LF>
Rx: 0x0000,0x0000,0<CR><LF>

// Set mode 0, normal

MOTOR:SDMODE - Step/direction mode

Limit inputs

LIMIT:EN – Limits global enable

https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-thigh-%25E2%2580%2593-microstep-tr

Gets or sets global limit enable state. If this setting is false, limits are disabled regardless of the state of any other
limits configuration item

This does not affect other limits configuration settings, allowing limits to be configured as desired, then globally
enabled or disabled if required.

Command: LIMIT:EN, Enabled<CR><LF>

Query: LIMIT:EN<CR><LF>

 Arguments

Enabled BOOL

Enable state of limits.

[0: Disable]
1: Enable

 Returns

True if limits are globally enabled.

Remarks

This option globally enables or disabled limits; remaining limits settings remain unchanged.

Examples

Tx: LIMIT:EN,0<CR><LF>
Rx: 0x0000,0x0000,0<CR><LF>
Tx: LIMIT:EN<CR><LF>
Rx: 0x0000,0x0000,0<CR><LF>

// Disable limits globally

// Query

Gets or sets the negative limit (corresponding to decrementing step counter), or positive limit (corresponding to
incrementing step counter) enable.

Command: LIMIT:ENx,Enabled<CR><LF>
Query: LIMIT:ENx<CR><LF>

Where 'x' is '-' for negative or '+' for positive limit.

Arguments

Enabled BOOL

Enable state of limit n.

0: Disable
[1: Enable]

Returns

True if limit is enabled.

Remarks

None.

Examples

LIMIT:EN-, LIMIT:EN+ Negative limit enable, positive limit enable

Tx: LIMIT:EN+,1<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>
Tx: LIMIT:EN-<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Set positive limit enable

// Query negative limit enable state

Gets or sets the negative or positive limit polarity.

Command: LIMIT:POLx,Polarity<CR><LF>
Query: LIMIT:POLx<CR><LF>

Where 'x' is '-' for negative or '+' for positive limit.

Arguments

Polarity UINT

Polarity of limit.

[0: Active high]
1: Active low

Returns

Polarity setting for the limit.

Remarks

None.

Examples

Tx: LIMIT:POL-,1<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>
Tx: LIMIT:POL+<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Set negative limit polarity to active low

// Query positive limit polarity

Set the polarity for both limits at once.

Command: LIMIT:POL,Polarity<CR><LF>

Arguments

Polarity UINT

Polarity of LP.

[0: Active high]
1: Active low

Remarks

None.

Examples

Tx: LIMIT:POL,1<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Set polarity of both limits to active low

LIMIT:POL-, LIMIT:POL+ Negative limit polarity, positive limit polarity

LIMIT:POL – Global limit polarity

LIMIT:STOPMODE – Limit stop mode

Gets or sets the limits stop mode, which determines behaviour on limit being triggered.

Command: LIMIT:STOPMODE, Mode<CR><LF>
Query: LSM<CR><LF>

Arguments

Mode UINT

The stop mode.

[0: Hard stop; the motor will stop immediately on a limit being
triggered]

1: Soft stop; the motor decelerates according to the profile

Returns

The stop mode, as above.

Remarks

When using hard stop, keep in mind that steps may be lost depending on the slewing speed and load on the motor.
Treat position counters with caution until the true position has been established. Conversely, when using soft stop,
ensure that the motor can decelerate to a stop before the physical end of travel is reached and steps are lost.

Examples

Tx: LIMIT:STOPMODE,1<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>
Tx: LIMIT:STOPMODE<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Set soft stop mode

// Query

Gets or sets the acceleration, in Hz/s (steps per second per second).

Command: MOTOR:AMAX, Acceleration<CR><LF>

Query: MOTOR:AMAX<CR><LF>

 Arguments

Acceleration FLOAT

The acceleration in Hz/s.
[Default: 5000]
Minimum: 10
Maximum: 15000

 Returns

User value (data 1) and real value (data 2). See user/real values.

Remarks

None.

Examples

Profile

MOTOR:AMAX - Acceleration

Tx: MOTOR:AMAX,150<CR><LF>
Rx: 0x0000,0x0000,1.5000E+02,1.4988E+02<CR><LF>
Tx: AMAX<CR><LF>
Rx: 0x0000,0x0000,1.5000E+02,1.4988E+02<CR><LF>

// Set acceleration to 150Hz/s
// Note that the target value of 150 has been adjusted to
the closest real value, which deviates from the requested
value by 0.12 Hz/s

Gets or sets the deceleration, in Hz/s (steps per second per second).

Command: MOTOR:DMAX, Deceleration<CR><LF>

Query: MOTOR:DMAX<CR><LF>

 Arguments

Deceleration FLOAT

The deceleration in Hz/s.
[Default: 5000]
Minimum: 10
Maximum: 15000

Returns

User value (data 1) and real value (data 2). See user/real values.
Remarks

None.
Examples

Tx: MOTOR:DMAX,150<CR><LF>
Rx: 0x0000,0x0000,1.5000E+02,1.4988E+02<CR><LF>
Tx: MOTOR:DMAX<CR><LF>
Rx: 0x0000,0x0000,1.5000E+02,1.4988E+02<CR><LF>

// Set deceleration to 150Hz/s

// Query deceleration

Get or set the start frequency in Hz. Must be set less than or equal to MOTOR:VSTOP. The acceleration ramp starts
from this frequency.

The start frequency is the initial step rate, and helps to allow the motor to overcome inertia and start moving
smoothly; if start frequency were zero, the duration of the initial few steps might be long enough that the motor would
overcome inertia on the first step, then effectively stop for a time, then have to overcome inertia once more for the
second step, and so on, until the steps were frequent enough that the motor remains moving.

Command: MOTOR:VSTART, StartFrequency<CR><LF>

Query: MOTOR:VSTART<CR><LF>

 Arguments

StartFrequency FLOAT

The start frequency in Hz.
[Default: 100]
Minimum: 1
Maximum: 700

 Returns

User value (data 1) and real value (data 2). See user/real values.
Remarks

MOTOR:DMAX - Deceleration

MOTOR:VSTART – Start frequency

https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-vstop-%25E2%2580%2593-stop-frequen

Start frequency must be set equal to or less than stop frequency. If a change to start frequency makes it bigger than
stop frequency, stop frequency is automatically adjusted to be equal to start frequency.
Start frequency must be set equal to or less than step frequency. Start frequency is not adjusted to match step
frequency if start frequency is greater than step frequency.
Examples

Tx: MOTOR:VSTART,0<CR><LF>
Rx: 0x0000,0x0000,0.0000+00,0.0000+00<CR><LF>
Tx: MOTOR:VSTART<CR><LF>
Rx: 0x0000,0x0000,0.0000+00,0.0000+00<CR><LF>

// Set start frequency to 0 Hz

// Query

Get or set the stop frequency in Hz. Must be greater than or equal to MOTOR:VSTART. The deceleration ramp ends at
this frequency. The final step before stop will occur at this frequency.
The stop frequency is the frequency at which the deceleration ramp ends; i.e. the deceleration ramp does not go from
the target frequency linearly down to 0, but from the target frequency linearly down to the stop frequency.

Command: MOTOR:VSTOP, StopFrequency<CR><LF>

Query: MOTOR:VSTOP<CR><LF>

Arguments

StopFrequency FLOAT

The stop frequency in Hz.
[Default: 100]
Minimum: 1
Maximum: 700

 Returns

User value (data 1) and real value (data 2). See user/real values.
Remarks

Stop frequency must be set equal to or greater than start frequency. If a change to stop frequency makes it smaller
than start frequency, start frequency is automatically adjusted to be equal to stop frequency.

Stop frequency must be set equal to or less than step frequency. Stop frequency is not adjusted to match step
frequency if stop frequency is greater than step frequency.
Examples

Tx: MOTOR:VSTOP,10<CR><LF>
Rx: 0x0000,0x0000,1.0000+01,9.9996+00<CR><LF>
Tx: MOTOR:VSTOP<CR><LF>
Rx: 0x0000,0x0000,1.0000+01,9.9996+00<CR><LF>

// Set stop frequency to 10 Hz
// Notice the closest real value of 9.9996 Hz set
// Query

Gets or sets the target step frequency in Hz, or steps per second. This is the maximum speed the motor will be run at.
The target frequency will only be reached if there is enough time or distance to do so; if moving for a short time, for
example, the motor may only accelerate to some fraction of the target frequency before it is time to decelerate to a
stop.

Command: MOTOR:VMAX, TargetFrequency<CR><LF>
Query: MOTOR:VMAX<CR><LF>

Arguments

TargetFrequency FLOAT

MOTOR:VSTOP – Stop frequency

MOTOR:VMAX – Step frequency

https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-vstart-%25E2%2580%2593-start-frequ

The target frequency in Hz.

[Default: 1 kHz]
Minimum: 1 Hz
Maximum: 15 kHz

Returns

User value (data 1) and real value (data 2). See user/real values.

Remarks

Motor torque decreases with speed, and each motor will have a different maximum frequency that it can achieve while
reliably maintaining synchronicity (when synchronicity is lost, the motor fails to complete the steps that it is
commanded to, leading to a difference between the true and actual positions), depending on the load it is driving.

Step frequency must be set equal to or greater than start frequency and stop frequency. Step frequency is not
adjusted to match start frequency and stop frequency if step frequency is smaller than start frequency and stop
frequency.
Examples

Tx: MOTOR:VMAX,1000<CR><LF>
Rx: 0x0000,0x0000,1.0000E+03,1.0000E+03<CR><LF>
Tx: MOTOR:VMAX<CR><LF>
Rx: 0x0000,0x0000,1.0000E+03,1.0000E+03<CR><LF>

// Set step frequency to 1 kHz

// Query

Get the live step frequency of the motor in Hz (steps per second).

Query: MOTOR:VACT<CR><LF>

Returns

The frequency at which the motor is spinning in Hz.

Remarks

This value is derived from the stepper motor control logic; there is no feedback from the motor itself. Hence, the motor
could be stalled while which continues to indicate the expected.

Examples

Tx: MOTOR:VACT<CR><LF>
Rx: 0x0000,0x0000,1.0000E+03<CR><LF>

// Query state of blink

Gets or sets the actual position in steps.

The usual way to position the motor is to initialise the actual position to some reference value, usually 0, then adjust
the target position to move the motor. In this way, by setting MOTOR:RUNA to 0 the motor can be homed to the initial 0
position. If you wish to perform relative movements, while still retaining an absolute reference, see MOTOR:PREL
command.

Command: MOTOR:PACT,Position<CR><LF>

Query: MOTOR:PACT<CR><LF>

Arguments

Position INT

MOTOR:VACT – Actual frequency

MOTOR:PACT – Actual position

https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-runa-%25E2%2580%2593-run%252C-absolute
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-prel-%25E2%2580%2593-relative-posi

The target position in steps.

Minimum: -8388608
Maximum: 8388607

Returns

The absolute position, as above.

Remarks

Query is applicable any time, Set requires the motor in standby condition.

Examples

Tx: MOTOR:PACT<CR><LF>
Rx: 0x0000,0x0000,1000.00<CR><LF>
Tx: MOTOR:PACT,0<CR><LF>
Rx: 0x0000,0x0000,0.00<CR><LF>

// Query

// Set actual position 0

Gets or sets the relative position counter in steps.

Use this function to perform relative movement, while still retaining reference to absolute position via MOTOR:PACT.
Set the desired value then use the MOTOR:RUNR command to initiate movement.

Command: MOTOR:PREL,Position<CR><LF>
Query: MOTOR:PREL <CR><LF>

 Arguments

Position INT

The target position in steps.

Minimum: -8388608
Maximum: 8388607

 Returns

The relative position, as above.

Remarks

Set requires the motor be in standby condition.

Examples

Tx: MOTOR:PREL<CR><LF>
Rx: 0x0000,0x0000,1000.00<CR><LF>
Tx: MOTOR:PREL,0<CR><LF>
Rx: 0x0000,0x0000,0.00<CR><LF>

// Query

// Set relative position 0

Gets or sets the waiting time after ramping down to a stop before the next movement or direction inversion can start.
Can be used to avoid excess acceleration, e.g. from MOTOR:VSTOP to MOTOR:VSTART.

When using higher values for the start and stop frequency, a subsequent move in the opposite direction would result in
a jerk equal to start frequency + stop frequency. The motor may not be able to follow this. Zero wait time can be used
to introduce a short delay between the two and eliminate the jerk.

Command: MOTOR:TZW,Duration<CR><LF>

MOTOR:PREL – Relative position

TZW – Zero wait time

https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-pact-%25E2%2580%2593-actual-positi
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-runr---run%252C-relative
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-vstop-%25E2%2580%2593-stop-frequen
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-vstart-%25E2%2580%2593-start-frequ

Query: MOTOR:TZW <CR><LF>

Arguments

Duration FLOAT

The waiting time in seconds.

[Default: 0]
Minimum: 0
Maximum: 2.7 s

Returns

The zero wait time, as above.

Examples

Tx: MOTOR:TZW,0.1<CR><LF>
Rx: 0x0000,0x0000,1.0000E+02<CR><LF>
Tx: MOTOR:TZW<CR><LF>
Rx: 0x0000,0x0000,1.0000E+02<CR><LF>

// Set TZW to 100 ms

// Query

Gets or sets the full step / microstepping transition. When frequency falls below this threshold (approximately), the
motor switches from full step to the selected microstep resolution. The product determines the upper threshold
automatically and applies hysteresis to avoid possible jitter between the two stepping modes. The upper threshold
cannot be adjusted.

Command: MOTOR:THIGH, Threshold<CR><LF>
Query: MOTOR:THIGH <CR><LF>

Arguments

Threshold FLOAT

Threshold in frequency Hz.

[Default: 10000 Hz]
Minimum: 1 Hz
Maximum: 15000 Hz

Returns

User value (data 1) and real value (data 2). See user/real values.

Remarks

AML Device control software calculates and displays the upper threshold value for reference, although as noted above
it cannot be adjusted.

Examples

Tx: MOTOR:THIGH,500<CR><LF>
Rx: 0x0000,0x0000,5.0000E+02,5.0400E+02<CR><LF>
Tx: MOTOR:THIGH<CR><LF>
Rx: 0x0000,0x0000,5.0000E+02,5.0400E+02<CR><LF>

// Set threshold to 500 Hz

// Query

MOTOR:THIGH – Microstep transition

Step/Direction

MOTOR:EDGE – Edge to step on

Gets or sets which edge(s) a step occurs on when in step direction mode.

Command: MOTOR:EDGE, Edge<CR><LF>
Query: MOTOR:EDGE <CR><LF>

 Arguments

Edge UINT

Edge(s) to step on.

[0: Rising edge only]
1: Both rising and falling edges

Returns

Edge(s) to step on.

Remarks

Use option for both edges to halve the frequency on the step input required to obtain a given step rate.

Examples

Tx: MOTOR:EDGE,1<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>
Tx: MOTOR:EDGE<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Set step on both edges

// Query

Gets or sets a value indicating whether the step input should be interpolated to 256 microsteps. Applicable in
Mode.StepDir mode only.

Command: INTERP, Interpolate<CR><LF>
Query: INTERP<CR><LF>

Arguments

Interpolate BOOL

Enable interpolation of step input to 256 microsteps.

[0: Normal; each step input will cause one step at the current
resolution]

1: Interpolate; each step input will be interpolated to 256
microsteps.

Returns

True if interpolation mode is active, as above.

Remarks

Enabling this feature affords the benefits of high-resolution microstepping, without the drawback of very high step
clock rates. Internal logic tracks the rate at which steps are supplied and smooths them out into 256 microsteps; e.g. if
resolution is set to full-step and see <edge to step on> is set to rising, then each rising edge on the step input
generates a series of 256 microsteps at the motor.

Examples

MOTOR:INTERP – Step interpolation

https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mode---choose-mode-o

Tx: MOTOR:INTERP,1<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>
Tx: MOTOR:INTERP<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Enable interpolation

// Query

Gets or sets the bake temperature setpoint. To run bake, select bake mode using the MODE, then start bake using the
run bake command. Use stop command to end bake.

Command: BAKE:T,Setpoint<CR><LF>
Query: BAKE:T <CR><LF>

Arguments

Setpoint UINT

Bake temperature setpoint.

[Default: 150 °C]
Minimum: 0 °C
Maximum: 200 °C

Returns

Bake temperature setpoint in °C, as above.

Examples

Tx: BAKE:T,100<CR><LF>
Rx: 0x0000,0x0000,100<CR><LF>
Tx: BAKE:T<CR><LF>
Rx: 0x0000,0x0000,100<CR><LF>

// Set bake setpoint to 100 °C

// Query

Start bake. Configure the bake temperature setpoint using BakeTemperature.

Command: BAKE:RUN<CR><LF>

Examples

Tx: BAKE:RUN<CR><LF>
Rx: 0x0000,0x0000<CR><LF>

// Run bake

Gets the elapsed bake time.

Command: BAKE:ELAPSED<CR><LF>

Returns

Elapsed time in format h:m:s where h is hours, m is minutes and s seconds.

Examples

Tx: BAKE:ELAPSED<CR><LF>
Rx: 0x0000,0x0000,2:34:12<CR><LF>

// Bake has run for 2 hours 34 minutes and 12 seconds

Bake

BAKE:T – Bake temperature setpoint

BAKE:RUN – Start bake

BAKE:ELAPSED – Elapsed bake time

Boost

https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mode---choose-mode-o
https://bookstack.vps-da8d40f3.arunmicro.com/link/14#bkmrk-runb-%25E2%2580%2593-run-bake
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-baket-%25E2%2580%2593-bake-tempera

Gets or sets a value indicating whether the boost supply should be enabled. The boost supply steps up the input
voltage from 48 V to 67 V to maximise motor dynamic performance. Enable for best performance. Regardless of this
setting, the boost supply is disabled when input voltage falls below 48 V, or the boost enable jumper is not fitted.

Command: BOOST:EN,State<CR><LF>
Query: BOOST:EN <CR><LF>

Arguments

State BOOL

Enable the boost circuit.

0: Disable boost
[1: Enable boost]

Returns

Enable state.

Examples

Tx: BOOST:EN,1<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>
Tx: BOOST:EN<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Enable boost

// Query

Coms: Ethernet

Gets or sets a value indicating whether DHCP is enabled. If enabled, DHCP (Dynamic Host Configuration Protocol) will
be used to automatically assign network configuration, such as IP address and gateway, to the device.

Command: COMS:NET:DHCP,State<CR><LF>
Query: COMS:NET:DHCP<CR><LF>

Arguments

State BOOL

DHCP enable state

0: Disable DHCP
[1: Enable DHCP]

Returns

Enable state BOOL

Examples

Tx: COMS:NET:DHCP,1<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>
Tx: COMS:NET:DHCP<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Enable DHCP

// Query

Gets or sets the gateway address. When DHCP is enabled, the value read back will be the value assigned by DHCP
rather than any value you might have set. Any value set however is retained, and will apply if DHCP is disabled at a

BOOST:EN – Boost enable

COMS:NET:DHCP – DHCP

COMS:NET:GATEWAY – Gateway

later time.

Command: COMS:NET:GATEWAY,Address<CR><LF>
Query: COMS:NET:GATEWAY<CR><LF>

Arguments

Address DOTTED DECIMAL

Returns

Address DOTTED DECIMAL

Examples

Tx: COMS:NET:DHCP<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>
Tx: COMS:NET:GATEWAY,192.168.1.1<CR><LF>
Rx: 0x0000,0x0000,10.0.96.1<CR><LF>

// Query DHCP state
// DHCP is on
// Set the gateway
// DHCP is on, and has assigned the gateway so the
returned value does not match what we set

Gets or sets the subnet mask. When DHCP is enabled, the value read back will be the value assigned by DHCP rather
than any value you might have set. Any value set however is retained, and will apply if DHCP is disabled at a later
time.

Command: COMS:NET:NETMASK,Mask<CR><LF>
Query: COMS:NET:NETMASK<CR><LF>

Arguments

Mask DOTTED DECIMAL

Returns

Mask DOTTED DECIMAL

Examples

Tx: COMS:NET:NETMASK<CR><LF>
Rx: 0x0000,0x0000,255.255.248.0<CR><LF>

// Query

Gets or sets the IP address. When DHCP is enabled, the value read back will be the value assigned by DHCP rather
than any value you might have set. Any value set however is retained, and will apply if DHCP is disabled at a later
time.

Command: COMS:NET:IP,Address<CR><LF>
Query: COMS:NET:IP<CR><LF>

Arguments

Address DOTTED DECIMAL

Returns

Address DOTTED DECIMAL

Examples

COMS:NET:NETMASK – Subnet mask

COMS:NET:IP – IP Address

Tx: COMS:NET:IP<CR><LF>
Rx: 0x0000,0x0000,10.0.97.70<CR><LF>

// Query the IP address

Outputs a summary of network configuration in human readable form.

Query: COMS:NET:IPCONF<CR><LF>

Returns

Network config summary See example below.

Examples

Tx: COMS:NET:IPCONF<CR><LF>
Rx: 0x0000,0x0000,<CR><LF>
Ethernet interface:<CR><LF>
 IPv4 Address. :10.0.97.70<CR><LF>
 Subnet Mask:255.255.248.0<CR><LF>
 Default Gateway :10.0.96.1<CR><LF>
 DHCP State. :Enabled<CR><LF>

Gets a value indicating whether the ethernet interface link is up. This will read back as false when the LAN connector is
unplugged for example.

Query: COMS:NET:LINK<CR><LF>

Returns

Link up state BOOL

Examples

Tx: COMS:NET:LINK<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Query
// Link is up

Gets the Ethernet interface MAC address.

Query: COMS:NET:MAC<CR><LF>

Returns

MAC address MAC

Examples

Tx: COMS:NET:MAC<CR><LF>
Rx: 0x0000,0x0000,44:b7:d0:c7:16:75<CR><LF>

// Query

Gets or sets the baud rate.

Command: COMS:SERIAL:BAUD,Baud<CR><LF>
Query: COMS:SERIAL:BAUD<CR><LF>

COMS:NET:IPCONF – Get network config summary

COMS:NET:LINK – Get link up status

COMS:NET:MAC – Get MAC address

Coms: Serial

COMS:SERIAL:BAUD – Baud rate

Arguments

Baud UINT

Baud rate

4800
9600
14400
19200
38400
57600
[115200]
230400
460800
921600

Returns

Baud rate UINT

Examples

Tx: COMS:SERIAL:BAUD,9600<CR><LF>
Rx: 0x0000,0x0000,9600<CR><LF>
Tx: COMS:SERIAL:BAUD<CR><LF>
Rx: 0x0000,0x0000,9600<CR><LF>

// Set 9600 baud

// Query

Gets or sets the serial coms mode, either RS232 or RS485. Unplug from the host device before changing the mode.

Command: COMS:SERIAL:MODE,Mode<CR><LF>
Query: COMS:SERIAL:MODE<CR><LF>

Arguments

Mode ENUM

Serial interface mode

0: RS232
[1: RS485]

Returns

Mode ENUM

Examples

Tx: COMS:SERIAL:MODE,1<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>
Tx: COMS:SERIAL:MODE<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Set RS485 mode

// Query

Gets or sets a value in milliseconds specifying the delay to execute between receipt of a command from the host and
the client (SMD4) sending the response. Applicable to RS485 mode only.

The RS485 interface is half duplex (it can send or receive data, but cannot do both at once) and so by default is in the
receive state. The interface switches to transmit mode when a command has been received, executed and a response
is ready to send. The turnaround delay is used to insert an additional delay following execution of the command but

COMS:SERIAL:MODE – RS232/RS485 mode selection

COMS:SERIAL:RS485DEL – Turnaround delay

preceding switching to transmit, to allow the host more time to switch into receive mode.

Experiment with increasing this setting if you find that host receives a response with a portion missing from the start of
the response, for example missing some or all of the status an error flags.

Command: COMS:SERIAL:RS485DEL,Delay<CR><LF>
Query: COMS:SERIAL:RS485DEL<CR><LF>

Arguments

Delay UINT

Delay in ms.

Default: 0
Minimum: 0
Maximum: 1000

Returns

Delay in ms UINT

Examples

Tx: COMS:SERIAL:RS485DEL,10<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>
Tx: COMS:SERIAL:RS485DEL<CR><LF>
Rx: 0x0000,0x0000,10<CR><LF>

// Set delay of 10 ms

// Query

Gets or sets a value indicating whether RS485 line termination should be used. If enabled, a 120 termination
resistance is placed between the RS485 A and B pins. See <section on termination>.

Command: COMS:SERIAL:TERM,State<CR><LF>
Query: COMS:SERIAL:TERM<CR><LF>

Arguments

State BOOL

Termination enable state

[0: Disabled]
1: Enabled

Returns

Enable state BOOL

Examples

Tx: COMS:SERIAL:TERM,0<CR><LF>
Rx: 0x0000,0x0000,0<CR><LF>
Tx: COMS:SERIAL:TERM<CR><LF>
Rx: 0x0000,0x0000,0<CR><LF>

// Disable termination

// Query

Gets or sets the slave address. Only applicable when addressing mode is used, see <section at top here detailing
addressing>

Command: COMS:SERIAL:SLAVEADDR,Address<CR><LF>

COMS:SERIAL:TERM – Termination

COMS:SERIAL:SLAVEADDR – Slave address

Query: COMS:SERIAL:SLAVEADDR<CR><LF>

Arguments

Address UINT

Termination enable state

Default: 1
Minimum: 1
Maximum: 247

Returns

Address UINT

Examples

Tx: COMS:SERIAL:SLAVEADDR,1<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>
Tx: COMS:SERIAL:SLAVEADDR<CR><LF>
Rx: 0x0000,0x0000,1<CR><LF>

// Disable termination

// Query

It is assumed that the reader is familiar with the production and handling of UHV components. The successful
application of vacuum stepper motors requires an appreciation of their thermal as well as their mechanical properties.
Compared to motors operated in air, the available cooling means for motors in vacuum are much less effective.

Apart from extending the run time, operation at a low temperature improves the outgassing performance of motors.
Therefore, minimum running times and motor currents should always be pursued. Selection of the largest motor
possible for the application will result in longer running times, lower motor temperature and lowest outgassing.

Design mechanisms with balanced loads whenever possible or arrange that either the static friction in the system or
the motor detent torque will hold position without the necessity of maintaining phase currents to produce a holding
torque. The IH command may be used to reduce the phase currents and produce a holding torque which is
intermediate between the pull-out torque and the detent torque. Refer to section Low power techniques for a full
description of power reduction techniques.

Many applications that appear to require continuous running, for example, substrate rotation for ensuring uniformity of
deposition or implantation, can be equally well performed by intermittent short periods of stepping at low duty cycle.
Stepper motors should not be disassembled as this partially demagnetises the permanent magnet in the rotor and
permanently reduces the torque.

The maximum recommended running temperature of AML motors is 190 °C, as measured by the embedded type K
thermocouple or RTD.

Current D-series motors have published temperature and time graphs for typical operating conditions with the motor
mounted by its flange. Continuous running can readily be achieved with care at medium phase currents. Run times at
higher currents can be increased by additional heatsinking at the other end of the motor.

Some AML motors are suitable for operation at 77 °K and they are believed to be suitable for use at lower
temperatures. Because the resistance of the windings at low temperatures is small, the efficiency of the motor is much
greater than at normal temperatures. A resistance of a few ohms should be connected in series with each winding, in
order to present a normal load to the SMD4. The leads of the motor will be very brittle at low temperatures and should
not be allowed to flex. The normal mechanical and electrical properties of all materials are recovered on return to room
temperature.

Newly installed motors will outgas, mainly due to water-vapour retention in polyimide. As this material is microporous
the water is released rapidly, and the rate will subside after a few hours. The rate may be accelerated by running the
motor to self-heat it.

Baking at up to 200 °C is permissible, and a 24-hour bake at this temperature will normally reduce the outgassing to
its minimum.

Motors are typically operated at some distance from the chamber walls where the bakeout temperature is most often
controlled. If the temperature indicated by the motor temperature sensor during bakeout is not high enough when the
bakeout period is well advanced, it may be increased to 200 °C by using the bake mode. This energises both phases,
keeping the motor stationary in a half-step position. Phase current is modulated to achieve the programmed setpoint.
Keeping the motor hot by this means while the rest of the vacuum system cools is recommended as this will prevent
condensation on the motor.

Where internal infra-red heaters are used for bakeout it is advisable to shield the motor from direct radiation and to
achieve the desired temperature during bakeout by using the bake program.

Irreversible deterioration of the winding insulation will begin to occur above 230 °C and the motor may subsequently
produce larger amounts of gas, even at lower temperatures.

Guidance on use of VCSMs

Operating temperature and run times

Outgassing and bakeout

Resonances

https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/communications-protocol#bkmrk-ih-%25E2%2580%2593-hold-current
https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/guidance-on-use-of-vcsms#bkmrk-low-power-techniques

Stepper motors are classic second-order systems and have one or more natural resonant frequencies. These are
normally in the 50 – 100 Hz region for unloaded motors. Operation at step rates around these frequencies will excite
the resonances, resulting in very low output torques and erratic stepping. Another set of resonances can occur in the 1
– 2 kHz region, but these do not normally present any practical problems.

The primary (lower) resonant frequency cannot be stated with any precision, since it is modified by the friction and
inertia of the load, the temperature of the motor and by the characteristics of the drive. Coupling a load inertia reduces
the resonant frequency and decreases the damping factor. Load friction increases damping. Because the drive circuits
of the SMD4 produce a controlled phase current this produces heavy damping. Drives which are voltage sources and
which rely on the motor winding and other resistance to define the current have a lower damping factor.

The effect of changing the damping on the single step response of the motor is shown in the diagram below.

The simplest method of controlling resonances is to avoid operation of the motor close to the resonant frequencies. It
is usually possible to start a motor at rates in excess of 300 Hz if the load inertia is small, thereby completely avoiding
the primary resonance. Resonances are not usually a problem when the motor speed is accelerating or retarding
through the resonance frequency region.

If it is necessary to operate at slow speeds or with large load inertia, using microstepping helps. It effectively increases
the stepping rate by the step division factor and reduces the amplitude of the step transients that excite the
resonances. This is shown in the diagram below. Because both phases are energised in microstepping there are some
other processes of interchange of energy between the windings which do not occur in the single step mode and these
increase the damping factor.

In particularly difficult cases, modifying the step frequency at which transition from full stepping to microstepping
occurs can be helpful.

A typical motor response to a single step and to a single step subdivided into eight microsteps is shown in the diagram
below.

The following section is an introduction to this topic and is intended to indicate the major mechanical and vacuum
considerations for various types of mechanisms. A working knowledge of mechanics and vacuum construction

Load inertia, friction and drive characteristics

Control of resonance

Mechanisms for use with VCSMs

techniques is assumed. AML supply a range of standard mechanisms which can be customised, as well as designing
custom mechanisms and components.

The load inertia coupled to the motor shaft should ideally be small compared to the rotor inertia of the motor. Load
inertia up to two or three times that of the motor can be driven, without significant difference to the maximum start
speed and acceleration which is achieved by the unloaded motor. Load inertia of around ten times that of the motor
can be driven with absolute synchronism, provided care is taken over specifying the microstep and acceleration
parameters. Larger inertia loads should be driven through reduction gearing.

Significant loads should have their centre of gravity on their axis of rotation, unless they are rotating in a horizontal
plane.

Angular resolution at the motor shaft is limited to a single step of 1.8 °. The actual rest position within the step is
determined mainly by the load friction and any torque imposed by the load on the motor at rest. If the rotor position is
displaced θ° from the nominal step position, the restoring torque increases approximately in proportion to sin(100 ×
 θ)° The maximum torque at the half step position is either the detent torque or the holding torque, depending on
whether the motor is powered at rest. If the static friction and any torque due to an unbalanced load are known, this
allows the rest position error to be estimated using the above approximation. The friction within the motor bearings is
very low, so that a completely unloaded D42.2 motor will normally settle within 0.2 ° of the desired position if brought
suddenly to rest from full stepping at 300 Hz.

Angular resolution may be improved by reduction gearing: this is discussed below.

In some applications, the precise position of a rotating load is not important or can be deduced by other means, but
the speed of rotation may need to be controlled very precisely. Beam choppers and sample rotators for control of
deposition uniformity are applications of this type. An increased load inertia may be desirable to smooth out the
stepping action of the motor. Loads of up to about 1000 times the inertia of the motor can be controlled by using long
acceleration ramps. Some steps may be lost during acceleration and retardation of such loads, but precise
synchronism at constant stepping frequency is easily achieved and recognised.

Significant rotating loads should be balanced, at least to the extent that the torque presented to the motor shaft is less
than the detent torque of the motor. The motor torque requirement will then be dominated by that required to
accelerate the load.

A typical example of a large inertia load was a 1.5 kg disk of uniform section, 20 cm in diameter. This was directly
coupled to a D42.2 motor and rotated continuously in vacuum at 30 RPM.

Translation may be produced by a leadscrew and nut, wire-and-drum or rack-and-pinion mechanisms. The choice
depends on the precision, length of travel, force and speed required. Leadscrew-based translators are capable of
exerting forces of kilograms with resolutions of a few microns per step.

Accurate leadscrews are practical up to 400 mm long. With anti-backlash gearing between the motor and leadscrew
resolution of one micron is practical. Anti-backlash nuts are not normally necessary for vertical motions. If a
conventional nut is used with the leadscrew the load will be dominated by friction, especially if there is a reduction
gear between the lead screw and the motor shaft which reduces the reflected load inertia.

Because of the lubrication restrictions and the slow speeds of UHV mechanisms the static friction is usually much more
significant than dynamic friction. The optimum material for nuts is phosphor bronze and for lead screws is stainless
steel with a diamond-like coating (DLC). DLC has a very low coefficient of friction in vacuum. Burnishing or sputtering a
layer of pure Molybdenum Disulphide on the leadscrew may be useful in reducing friction and wear. The typical
coefficient of friction between these materials is 0.1 and typical efficiencies are 40 % with ground trapezoidal threads.
The gas load generated by frictional heating of the leadscrew is usually somewhat less than that of the motor.

The frictional losses in drum or rack drives are lower than in conventional leadscrew drives and considerations of
inertia usually dominate. Rack and pinion drives are suitable for travel up to a few hundred millimetres and wire and
drum mechanisms may be made several metres long. Another alternative for heavy loads is a studded stainless-steel
band and matching pulleys. The repeatability and backlash of all these alternative translation drives are much worse

Rotation (Position control)

Rotation (Speed control)

Translation

than with screw-driven schemes.

Low-cost translation mechanisms can use simple bushes running on ground stainless-steel rods. A variety of carbon-
reinforced polymer materials, such as PEEK, are suitable for the bushes.

'V' groove rollers and tracks and crossed-roller guides are suitable for more accurate translators. The former have the
advantage of being practical to 1 metre and have minimal overall length for a given travel. Crossed-roller slides are
more rigid and can support larger loads, but at higher cost. Both types have preload adjustments. 'V' rollers have
smaller load-bearing surfaces and only have a rolling contact at a single point and are consequently liable to greater
wear if heavily loaded. AML products of the VSM23 and VSM17 series are small-dimension examples of these types of
mechanisms.

The inertia of loads coupled by reduction gearing is reduced at the motor in proportion to the square of the reduction
ratio. Where reduction gearing is used for load matching, the spur gear meshing with the motor pinion will normally
dominate the load inertia and it is important to keep its diameter small. Anti-backlash gears and standard pinions
should be used in the gear train to damp any resonances in the mechanism. Gears for use in UHV should be designed
for low friction without lubrication and with dissimilar materials in contact to avoid cold-welding. Nitrogen ion-
implantation of the rolling surfaces or complete Titanium Nitride coating of gears are effective means of achieving this
and other desirable properties in all-stainless-steel gear trains.

Bearings for use in UHV should be unshielded and have a stainless steel cage and race. The balls should be either
stainless steel coated with some other material or solid ceramic. As an alternative, all-stainless bearings having a PTFE
composite component in the race (which is designed to transfer to the balls) are also suitable.

Motors should not be operated in fields of greater than 50 millitesla (500 gauss), as this will affect the performance
while the field is present. Fields significantly greater than this may cause partial demagnetisation of the rotor, reducing
the torque. Demagnetised motors can be restored by AML.

The leakage field of a motor is of the order of 1 millitesla (10 gauss) at 1 cm from the cylindrical surface of the motor in
an axial direction and is present when the motor is not powered. Under drive an alternating component is added at the
step frequency and its harmonics up to a few kHz. The field is easy to screen with Mu-metal or similar high
permeability foil to below a few milligauss at the sides of the motor but is more difficult around the projection of the
shaft. Early consideration of the interaction of stray fields on nearby equipment is recommended.

In the design of small mechanisms there are several factors that are not accurately known, or that have poor
tolerances, for which generous allowances must be made. The result should be a conservative design where the
available torque is in excess of the requirement. Some of this excess can be exchanged for increased running time or
decreased outgassing in vacuum by various techniques. Used in combination the improvement can be very significant.

Most of the 'tuning' procedures below require the motor or mechanism to be run on the bench under realistic
representative operating conditions while adjusting a parameter to the point where normal stepping operation fails.
Erratic stepping is easy to see; a cable tie on the motor shaft makes a useful pointer. Familiarity with the SMD4
software and or remote interface is assumed.

The following techniques can be used in all applications to reduce motor power:
1. Run the motor at stepping rates between 500 Hz and 2 kHz, where its electromechanical efficiency is

greatest, if possible
2. Reduce the acceleration for inertia-dominated loads
3. Reduce the phase current progressively to about 20% more than the minimum for consistent stepping. Some

adjustment of the acceleration parameters may be needed
4. Make use of the run and acceleration current settings; try a higher current during acceleration to overcome

inertia of a large load, and the minimum current possible during run to keep the load moving. This will reduce

Linear guides

Reduction gearing

Bearings

Magnetic fields near motor

Low power techniques

Techniques applicable to all applications

motor power dissipation versus using the same higher current all the time
5. Improve the heatsinking arrangements. A reduction in motor temperature decreases the winding resistance

and increases its efficiency.

For applications where operation below few hundred steps per second is satisfactory, use the following technique
beyond those above. The desired effect is to complete each step as quickly as possible and remove or reduce the
power to the minimum as soon as possible. Each step is completed in a few milliseconds, so that the power saving is
progressively greater at lower speeds. Read and ensure that you understand the complete procedure before starting.

Set the target frequency VMAX equal to the start speed VSTART and steadily increase them both to determine the
highest speed at which the motor will start. Take care when increasing the speed through the expected resonance
range because the motor may not start in that range, although it may start reliably at higher speeds.

Configure PDDEL, IHD and IH to zero, to reduce motor current to zero as quickly as possible after each step is
completed. Move the motor in single steps at the highest reliable starting speed, followed by a delay of a few
milliseconds or more. This reduces power dissipation in the motor and so minimises temperature rise. It also has the
consequence of reducing the damping factor at the time the power is reduced, so some experimentation with the
parameters is required to ensure an adequate margin of stability is obtained.

Vacuum motors must be de-magnetised before disassembly and re-magnetised and cleaned after repair. For these
reasons most will need to be returned to AML for repair. The notes below offer guidance on the avoidance of the most
common problems and diagnostic advice.

The ceramic balls in the bearings are very strong but more brittle than steel balls. Dropping the motor on its end will
probably break some balls. The damage is occasionally visible and any roughness felt when rotating the shaft manually
will indicate that this has happened.

Foreign material can enter the motor via the pumping holes and gaps in the bearings. Particles of magnetic materials
are particularly likely to be attracted through the pumping holes and they eventually migrate into the gap between the
rotor and stator. They usually cause the rotor to stick at one or more points per revolution and can often only be felt
when rotating in a specific direction. Fortunately, the larger motors have enough torque to grind them into a dust.

The main cause of this type of problem has been users modifying shafts. This can be avoided by sealing the motor
inside a cleaned polyethylene bag and supervising the machining closely. Clean the projecting shaft and remove
magnetic particles with a magnet before opening the bag. Remove the motor or similarly seal it if any filing or drilling
of nearby components is done.

Motors which have been heated to 230 °C will produce a much greater gas load thereafter, although their
electromechanical performance may not be affected. In extreme cases, the insulating material will ablate and deposit
itself as a yellow powder inside the motor case and on any cool surfaces in line with the pumping holes.

Motors can overheat very quickly in vacuum. This is very unlikely to happen with a properly connected SMD4 drive.
Never use a drive capable of providing more than 1 amp of phase current and ensure that the drive current is removed
as soon as the indicated temperature exceeds 190 °C. This is performed automatically by the SMD4.

Techniques where step rates less than 100 Hz

Possible causes of damage to VCSMs

Bearing damage

Debris inside the motor

Overheating

The SMD4 contains no user-serviceable parts.

If the instrument requires cleaning, disconnect the power and all other connections, and wipe it down with a cloth
slightly dampened with water or a mild detergent.

Maintenance and service
Cleaning

Problem Resolution

Red and green status indicators off Check that the power supply to SMD4 is correctly
connected and meets the requirements given in section
Technical Information

Red status indicator flashing or lit solidly Each indication corresponds to a fault, review section
Faults

Motor does not move when commanded Is a fault present? Check the red status indicator on the
front panel, and use the SMD3 software or remote
interface to determine the nature of the fault. After the
fault has been fixed, run the CLR command, or use the
reset fault input to restore normal operation

Check the motor wiring to the SMD3; disconnect the
motor, and use a multimeter to measure the resistance
of each phase, see section Lead Identification, which
should be approximately 3 – 15 ohms

Joystick does not work Is joystick mode selected?

If you want to switch to joystick mode automatically on
connection of the joystick, see setting AUTOJS and
section Joystick. The joystick must be wired correctly for
the auto-detect function to work as described in section
Joystick.

Troubleshooting

https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/technical-information
https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/operation#bkmrk-faults
https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/installation#bkmrk-lead-identification-1
https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/communications-protocol#bkmrk-%25C2%25A0-15
https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-joystick
https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-joystick

The product must be disposed of in accordance with the relevant local regulations for the environmentally safe
disposal of systems and electronical components.

In the United Kingdom (UK) and European Union (EU),
waste from electrical and electronic equipment (WEEE) is
subject to legislation designed to prevent the disposal of
such waste and to encourage proper treatment measures
to minimize the amount of waste ultimately disposed to
landfill. To view AML’s WEEE policy please visit:
https://arunmicro.com/documentation/WEEE_procedure.pdf

Storage and disposal

https://arunmicro.com/documentation/WEEE_procedure.pdf

In the first instance, contact the distributor or supplier of the equipment. Always quote the serial number of the
instrument and firmware and software versions. Provide a written description of the problem. If the problem is related
to a motor or mechanism manufactured by AML, include the serial number(s) of those items. Do not return products to
AML without prior approval.

Arun Microelectronics Ltd
Tel: +44 (0)1903 884141
Email: info@arunmicro.com
Website: arunmicro.com

Assistance

https://arunmicro.com/

 This declaration of conformity is issued under the sole responsibility of the manufacturer.

Manufacturer: Arun Microelectronics Limited

Address: Unit 2, Bury Mill Farm, Bury Gate, Pulborough, RH20 1NN,
United Kingdom

Object: Stepper Motor Drive

Part No.: SMD4

The object of the declaration described above is in conformity with the relevant UK Statutory Instruments (and their
amendments), and the relevant European Union harmonisation legislation:

Statutory Instruments: 2016 No. 1091 The Electromagnetic Compatibility
Regulations 2016

 2016 No. 1101 The Electrical Equipment (Safety)
Regulations 2016

 2012 No. 3032 The Restriction of Use of Certain
Hazardous Substances in Electrical
and Electronic Equipment
Regulations 2012

Directives: 2014/30/EU EMC Directive
 2014/35/EU Low Voltage Directive
 2015/863 RoHS Directive

Standards: Harmonised and international/national standards and specifications:

 EN 61010-1:2010+A1:2019 Safety requirements for electrical

equipment for measurement, control
and laboratory use

 EN IEC 61800-3:2023 Adjustable speed electrical power
drive systems

Signature

Mr. R Burling, Product Design Manager

Place, Date Pulborough, April 2024

Compliance Certificate

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-04/sig.PNG

	SMD4 User Manual
	Introduction
	Liability and warranty

	Safety and warning notices
	Technical information
	General
	Mechanical
	Scope of delivery
	Accessories

	Installation
	Before installation
	Unpacking
	Mechanical installation
	Connecting
	Rear panel
	Power
	Motor
	Motor
	Limits
	Thermocouple
	RTD
	Custom cables

	I/O
	Fault output and fault reset
	Limits
	Step, direction and enable

	USB
	LAN
	RS232/485
	Bussing

	Front panel
	Joystick
	Status indicators

	Motor wiring
	Overview

	Lead identification
	Note regarding reversal of rotation

	Wiring motor to a vacuum feedthrough
	Wiring between drive and vacuum feedthrough

	Operation
	Getting started
	Operating modes
	Remote
	Homing function

	Joystick
	Step/Direction
	Normal mode
	Triggered mode

	Bake

	General concepts
	User interface
	Persistence of settings
	Motor current
	Microstepping
	Freewheel mode
	Velocity and Positioning mode
	Initiating movement
	Monitoring the motor

	Enable input
	Motor configuration
	Temperature sensor selection

	Profile configuration
	Start and stop frequency
	Acceleration and deceleration
	Changing direction

	Limits
	Faults
	Types of fault
	Clearing a fault

	Software
	Installation and setup
	Overview
	Project panel
	Device properties panel
	System work area
	Controller window
	Ribbon

	Saving projects
	Scripting
	Function specific to the SMD4 software
	Example scripts
	Add device, rename and set device properties
	Move motor and wait
	Get value of actual position counter and log to command line
	Check if the motor is in standby

	Remote interfaces
	USB
	Serial
	Ethernet
	SSDP
	Supported search targets (queries)
	Response

	Communications protocol
	Addressing
	Comma separation
	Argument types
	Flags
	Error flags (EFLAGS)
	Status flags (SFLAGS)
	Error codes

	Quick reference
	General
	Command movement
	Motor
	Limit inputs
	Profile
	Step/Direction
	Bake
	Boost
	Coms

	Command reference
	General
	SYS:IDENT - Rapidly blinks status indicator (R/W)
	SYS:MODE - Choose mode of operation
	SYS:JSMODE – Joystick mode
	SYS:AUTOJS – Auto switch to joystick mode
	SYS:EXTEN – External enable used
	SYS:CLR – Clear faults
	SYS:FLAGS – Get status and error flags
	SYS:FLAGSV – Get status and error flags summary
	SYS:FW – Get firmware version
	SYS:LOAD – Load last stored settings
	SYS:LOADFD – Load factory default settings
	SYS:PROG – Enter programming mode
	SYS:RESET– Restart the SMD4
	SYS:BSN – Get motherboard serial number
	SYS:PSN – Get product serial number
	SYS:UPTIME – Get uptime
	SYS:UUID – Get UUID

	Command movement
	MOTOR:RUNV – Run, velocity
	MOTOR:RUNA – Run, absolute position
	MOTOR:RUNR - Run, relative position
	MOTOR:RUNH - Run, home
	MOTOR:STOP – Stop motor
	MOTOR:SSTOP – Stop motor in <=1 s
	MOTOR:ESTOP – Emergency stop

	Motor
	MOTOR:TSEL – Temperature sensor selection
	MOTOR:T – Motor temperature
	MOTOR:IR – Run current
	MOTOR:IA – Acceleration current
	MOTOR:IH – Hold current
	MOTOR:PDDEL – Power down delay
	MOTOR:IHD – Delay per current reduction step
	MOTOR:F – Freewheel mode
	MOTOR:RES - Resolution
	MOTOR:SDMODE - Step/direction mode

	Limit inputs
	LIMIT:EN – Limits global enable
	LIMIT:EN-, LIMIT:EN+ Negative limit enable, positive limit enable
	LIMIT:POL-, LIMIT:POL+ Negative limit polarity, positive limit polarity
	LIMIT:POL – Global limit polarity
	LIMIT:STOPMODE – Limit stop mode

	Profile
	MOTOR:AMAX - Acceleration
	MOTOR:DMAX - Deceleration
	MOTOR:VSTART – Start frequency
	MOTOR:VSTOP – Stop frequency
	MOTOR:VMAX – Step frequency
	MOTOR:VACT – Actual frequency
	MOTOR:PACT – Actual position
	MOTOR:PREL – Relative position
	TZW – Zero wait time
	MOTOR:THIGH – Microstep transition

	Step/Direction
	MOTOR:EDGE – Edge to step on
	MOTOR:INTERP – Step interpolation

	Bake
	BAKE:T – Bake temperature setpoint
	BAKE:RUN – Start bake
	BAKE:ELAPSED – Elapsed bake time

	Boost
	BOOST:EN – Boost enable
	COMS:NET:DHCP – DHCP
	COMS:NET:GATEWAY – Gateway
	COMS:NET:NETMASK – Subnet mask
	COMS:NET:IP – IP Address
	COMS:NET:IPCONF – Get network config summary
	COMS:NET:LINK – Get link up status
	COMS:NET:MAC – Get MAC address

	Coms: Serial
	COMS:SERIAL:BAUD – Baud rate
	COMS:SERIAL:MODE – RS232/RS485 mode selection
	COMS:SERIAL:RS485DEL – Turnaround delay
	COMS:SERIAL:TERM – Termination
	COMS:SERIAL:SLAVEADDR – Slave address

	Guidance on use of VCSMs
	Operating temperature and run times
	Outgassing and bakeout
	Resonances
	Load inertia, friction and drive characteristics
	Control of resonance

	Mechanisms for use with VCSMs
	Rotation (Position control)
	Rotation (Speed control)
	Translation
	Linear guides
	Reduction gearing
	Bearings

	Magnetic fields near motor
	Low power techniques
	Techniques applicable to all applications
	Techniques where step rates less than 100 Hz

	Possible causes of damage to VCSMs
	Bearing damage
	Debris inside the motor
	Overheating

	Maintenance and service
	Cleaning

	Troubleshooting
	Storage and disposal
	Assistance
	Compliance Certificate

